
Chapter 2

Quantum states of light

2.1 Overview

An overview on different states that have been constructed over the years.
A brief list including states that are important in the quantum optics context
is given in Table 2.1. Note that these states apply to any physical system
described by a harmonic oscillator, this is a larger class than just modes of
the electromagnetic field.

2.2 How to identify a single mode

The quantized light field can be in different states. We start here with
a single mode of the field. This may be a oversimplification, but single-
mode fields have become part of the experimental reality with the advent
of high-quality optical cavities. These devices give an electromagnetic field
whose amplitude, in the region between two well-reflecting mirrors, is
much higher at some resonant frequencies. The ‘mode function’ is in this
case not a plane wave, of course, but a standing wave. In the transverse
directions, one often has a gaussian profile. Around a cavity resonance, it
is a frequent approximation to treat the full field as if it contained only a
single mode. The coupling to other modes may be taken into account as a
loss.
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name person notation eigenstate of hn̂i preparation

number Fock |ni n̂ = â
†
â n micromaser (difficult!)

thermal Boltzmann ⇢T ? n̄(T ) (BE) contact with thermal bath

coherent Glauber |↵i = D̂(↵)|0i â|↵i = ↵|↵i |↵|2 classical source

squeezed ? |⇠i = Ŝ(⇠)|0i (µa� ⌫a
†)|⇠i = 0 |⌫|2 non-linear medium,

parametric resonance

Table 2.1: Quantum states of a single mode (annihilation operator a). The
operator D̂(↵) = exp(↵a

† � ↵
⇤
a) is called displacement operator. Similarly,

Ŝ(⇠) = exp(⇠a
†2 � ⇠

⇤
a
2
) for the squeezing operator. Parametrization ⇠ = (r/2)e

i�

with µ = cosh r, ⌫ = e
i�
sinh r. (Check factor 1/2.)

The electric field is given by

E(x, t) = E1"
⇣
a(t) + a

†(t)
⌘
sin kz (2.1)

where z is the coordinate along the cavity axis and k = nz⇡/L. The
factor E1 can be called the ‘electric field per photon’. From a plane-
wave expansion in a quantization volume V , E1 is given by the prefactor
Ek = (h̄!k/2"0V )1/2. The corresponding ‘intensity’ is

I1ph = "0cE
2
k
=

h̄!kc

2V
. (2.2)

In a cavity, we can take for V the volume ‘filled’ by the mode. For a
transverse mode size of 1 micrometer and a cavity length of 1 cm, we get
I1ph ⇠ 103 mW/cm2 which is not really small. The total power, however,
is quite small: about 10�8 W. Note also that these numbers are based
on very ‘tight’ (diffraction-limited) focussing — beams with larger cross-
section have a smaller ‘field per photon’.

In the Heisenberg picture, the field operator evolves as

E(x, t) = E1"
⇣
a e�i!t + a

† e�i!t
⌘
sin kz (2.3)

A combination of annihilation and creation operators like the one in paren-
theses is called a ‘quadrature’. Quadratures always come in pairs. One
can find a second quadrature variable by shifting the origin of time by one
quarter period: / �i a e�i!t + i a† ei!t. This corresponds to the magnetic
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field [compare expansion of electric and magnetic field operators in QO I].
In analogy to the harmonic oscillator, one often uses the following quadra-
ture variables

X =
a+ a

†
p
2

P =
a� a

†
p
2 i

(2.4)

or more generally

X✓ =
a e�i✓ + a

† ei✓p
2

(2.5)

with X0 = X and X⇡/2 = P .
The ground state of the field mode is called the ‘vacuum’ (no photon,

i.e., no excitation present). It is found by looking for the state that is anni-
hilated by the annihilation operator: a|vaci = 0. Obviously, this is also an
eigenstate of the photon number operator with zero photons: |vaci = |0i.
In the vacuum state, the electric field is also zero on average, of course.

But there are fluctuations around this average, called ‘quantum noise’.
In the vacuum state of the single mode (2.1), e.g., we get

hE(x, t)2i0 = E
2
1 sin

2
kz h0|

⇣
a(t) + a

†(t)
⌘ ⇣

a(t) + a
†(t)

⌘
|0i (2.6)

and this combination of operators gives an average

h0|
⇣
a(t) + a

†(t)
⌘ ⇣

a(t) + a
†(t)

⌘
|0i = h0|a(t)a†(t)|0i = 1 (2.7)

The ‘vacuum noise’ in our mode is thus given by the squared single pho-
ton field E

2
1 sin2

kz. Similarly, the other quadrature variable a(t) � a
†(t)

shows a noise strength of unity. This is in accordance with Heisenberg’s
indeterminacy relation, since

h
a(t) + a

†(t), a(t)� a
†(t)

i
= �2. (2.8)

2.3 Gallery of quantum states

2.3.1 Number (Fock) states

The simplest quantum states of the single mode field are given by the well-
known stationary states of the harmonic oscillator. These quantum states
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are called ‘Fock states’ or ‘number states’ |ni. They are eigenstates of the
‘photon number operator’

n̂ = a
†
a = aa

† � 1 (2.9)

Since the field energy is proportional to the photon number, the Fock states
are also eigenstates of the field Hamiltonian. Hence they correspond to the
standard stationary states in quantum mechanics.

Number states are generated by applying the creation operator to the
ground state (vacuum state) of the mode:

|ni = 1p
n!
(a†)n|0i (2.10)

The expectation value of the annihilation operator is zero in a number
state:

hain = hn|a|ni =
p
nhn|n� 1i = 0 (2.11)

The same is true for the creation operator. It follows that the electric field
average vanishes not only in the vacuum state, but in any Fock state:

hn|E(x, t)|ni = 0 (2.12)

Exercise. Compute the variances of the quadrature operators X✓ in an
arbitrary number state |ni.

The quantum numbers n give an intuitive interpretation to the creation
and annihilation operators: they connect states whose photon numbers
differ by one. In this sense, the ‘creation operator’ a† creates one photon
since for example

h1|a†|0i = 1. (2.13)

This matrix element plays an important role when one computed the prob-
ability amplitude that an excited atomic state emits a photon. For stimu-
lated emission, one needs hn+1|a†|ni =

p
n+ 1. Similarly, the ‘annihilator’

a destroys one photon:
h0|a|1i = 1. (2.14)

This matrix element is needed to compute absorption, and in the general
case, hn� 1|a|ni =

p
n.
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• Experimentally, Fock (number) states are the most difficult to prepare.
One has to avoid the loss of photons that makes the photon number uncer-
tain. In addition, the preparation has to target precisely the photon number.
One possible scheme works with a variant of the Jaynes-Cummings-Paul
model: an excited two-level atom interacts with the single-mode cavity
over a precisely tuned interaction time ⌧ such that g

p
n+ 1⌧ is a multiple

of 2⇡. As we have seen in QO I, the atom then performs a full Rabi cycle
and ends again in the excited state. If the other conditions are well-chosen,
the state |ni of the cavity can be a stable equilibrium state for this pumped
system. Of course, one has to inject atoms regularly to compensate for the
loss.

2.3.2 Thermal states

This class of field states is more general than the ‘pure’ states described
before. Strictly speaking, they are not “states”, but density operators. The
thermal state is the first example where one has to use both classical and
quantum statistics, and this is achived with the concept of density operator
that combines the two.

Density operators

A density operator is a hermitean operator ⇢̂ on the Hilbert space H of the
quantum system under consideration, with the properties

• ⇢ is positive, i.e., h |⇢̂| i � 0 for all  2 H

• ⇢ is a trace class operator, i.e., tr ⇢̂ =
P

nhn|⇢̂|ni = 1 where the vectors
|ni form a basis of H.

It is easy to see the inequality 0  h |⇢̂| i  1 for a normalized state
vector. Physically, this means that this the real number can be interpreted
as a probability: it is the probability to find the system in the state | i when
performing a measurement.

The expectation value of an operator A is now given by the rule

hAi⇢̂ = tr (A⇢̂) = tr (⇢̂A) (2.15)
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where the order under the trace can be changed because of cyclic permu-
tations.

In a sense, thermal quantum states are a natural generalization of clas-
sical thermodynamics to the quantum world. One uses stationary states,
hence the number states we found first, and imposes Boltzmann statistics
to describe the field at thermal equilibrium.

For the single field mode we are discussing here, stationary states are
the number states |ni; they occur with a classical probability proportional
to the Boltzmann factor e�nh̄!/kBT . The density operator is given by

⇢̂ =
1

Z
exp[�h̄!n̂/kBT ] =

1

Z

1X

n=0

e�nh̄!/kBT |nihn| (2.16)

The normalization factor Z is found by requiring that the trace of this op-
erator be unity:

Z = tr

 1X

n=0

e�nh̄!/kBT |nihn|
!

=
1X

n=0

e�nh̄!/kBT =
1

1� e�h̄!/kBT
, (2.17)

where a geometric series has been summed. You know this sum from classi-
cal thermodynamics as ‘partition function’ (Zustandssumme). The normal-
ized probabilities

pn(T ) = (1� e�h̄!/kBT )e�nh̄!/kBT (2.18)

are simply the classical probability that the stationary state |ni is realized
in the canonical ensemble.

We note that the terms |nihn| in the sum (2.16) are also density oper-
ators: they are obviously positive and have trace unity. (In fact, the trace
boils down to the norm squared of the state |ni.) The thermal density oper-
ator is thus a probability-weighted, convex sum of density operators.1 This
convex summation is, in general, an allowed linear operation on the space
of density operators.

The density operators |nihn| are special because they are made up of a
single state. These quantum states are called pure. A formal definition:

• A density operator ⇢̂ describes a pure state if ⇢̂2 = ⇢̂.
1One talks about a convex sum if all coefficients are real numbers between zero and

one.
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In mathematics, operators with this property are called projectors. This is
also what is suggested by the Dirac notation | ih |: this operator acts on
the Hilbert space by first projecting onto the state | i and then gives back a
vector proportional to | i, just what happens in geometry for the projection
onto a vector.

A thermal field mode

At optical frequencies and room temperature, the Boltzmann factor
exp(�nh̄!/kBT ) has a large negative argument for n � 1 so that the field is
essentially at zero temperature. This is different for microwave radiation,
e.g., or for star atmospheres.

Simple exercise: mean photon number. Let us apply the general
rule (2.15):

hn̂iT = tr(n̂⇢̂T ) =
1

Z

1X

n=0

hn|n̂ exp(�h̄!n̂/kBT )|ni (2.19)

The number operators and the Boltzmann ‘operator’ act on their eigenvec-
tors, hence

hn̂iT =
1

Z

1X

n=0

n exp(�h̄!n/kBT ) =
1

eh̄!/kBT � 1
. (2.20)

Exercise: photon number variance. Result:

(�n)2
T
=

eh̄!/kBT

(eh̄!/kBT � 1)2
=

1

4 sinh2(h̄!/2kBT )
. (2.21)

Discuss the limiting cases !/T ! 0 (‘hot’ or ‘classical’ limit) and !/T ! 1
(‘cold’ or ‘quantum’ limit).

Electric field fluctuations in a single mode at finite temperature:

hE2(x, t)iT = E
2
1 sin

2
kz

D
a(t)a†(t) + a

†(t)a(t)
E

T
= E

2
1 sin

2
kz (2hn̂iT + 1)

(2.22)
they are enhanced by a factor 2hn̂iT +1 = coth(h̄!/2kBT ) compared to zero
temperature.
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Three remarks on the advantages of the density operator formalism:

• the traces that are required for expectation values can be taken in any
basis. One can choose a basis adapted to the operator whose average
one its interested in.

• Second, the presence of the density operator ⇢̂ under the trace ensures
that the trace exists even if the operator A has ‘large matrix elements’
(like the photon number operator). Well, this is in fact just a restric-
tion on the observables and states that are mathematically allowed.
Thermal states have the advantage that the expectation values exists
for a broad class of observables because the matrix elements of the
density operator become rapidly small for large n.

• The third advantage of using a density operator approach is that it
gives a suitable description of a quantum system whose dynamics is
not completely known and can only be specified by probabilities. In
that case, one formulates an equation of motion for the density matrix
from the solution of which the averages of all interesting quantities
can be calculated.

Preparation of a thermal state with rate equations

As an example of the last remark, we sketch here a ‘preparation scheme’ for
a thermal state. We are going to use ‘rate equations’: differential equations
for the diagonal elements pn(t) = hn|⇢̂(t)|ni:

dpn
dt

= �npn + 
0
npn�1 � 

0(n+ 1)pn + (n+ 1)pn+1 (2.23)

The constants  and 0 can be interpreted as transition rates between states:
the transition |ni ! |n � 1i happens with the rate n (this rate appears as
a negative term in ṗn and as a positive term in ṗn�1). This process can
be interpreted physically as the loss of one of the n photons. This photon
goes into a ‘heat bath’ or ‘environment’ and is absorbed there. Similarly,
the system described by ⇢̂ can absorb one photon from the heat bath – this
happens with a ‘Bose stimulation factor’ because for the transition |n�1i !
|ni, the rate is 0n. (To be read off from the second and third terms in
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Eq.(2.23).) Even the vacuum state can absorb a photon, hence not n � 1,
but n appears here.

If one waits long enough, the density matrix (more precisely, its diago-
nal elements) relaxes into a steady state given by the equations of ‘detailed
balance’

0 = �np(ss)
n

+ 
0
np

(ss)
n�1 (2.24)

This equation implies that ṗn = 0 in Eq.(2.23), but is slightly stronger. (One
can probably show it by induction, starting from n = 0.) Eq.(3.35) gives a
recurrence relation that links p(ss)

n
to p

(ss)
n�1, whose solution is

p
(ss)
n

⇠
 

0



!
n

=: e�nh̄!/kBT (2.25)

where we can identify the temperature T from the ratio of the rate con-
stants 0/. (One needs 0 < , otherwise no stable equilibrium state is
found.) Of course, this definition of temperature is linked to assigning an
energy nh̄! to the state |ni.

Note the similarity of this approach to the photon statistics à la Scully &
Lamb for the laser [QO I]. The difference here is that the dependence of the
rates n and 

0
n in the detailed balance relation (3.35) is in fact simpler

because there is no saturation.

2.3.3 Coherent states

Definition and properties

The coherent state |↵i is an eigenstate of the annihilation operator:

a|↵i = ↵|↵i (2.26)

Since a is not an hermitean operator, ↵ can be complex. In a coherent state,
the average electric field is nonzero:

hE(x, t)i↵ = E1 sin kz h↵|
⇣
a(t) + a

†(t)
⌘
|↵i = E1 sin kz

⇣
↵ e�i!t + ↵

⇤ ei!t
⌘
.

(2.27)
We have assumed the field in a coherent state of the initial annihilator a.
This expression is the same that we have used in chapter 1 for a classical,
monochromatic field. The magnetic field quadrature also has on average
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its classical value in a coherent state. Coherent states are thus very useful
to represent laser fields. We see that ↵ measures the electric field strength
in units of the ‘single photon field’ E1. If we compute the average photon
number in a coherent state, we get

hn̂i↵ = ha|a†a|↵i = |↵|2, (2.28)

so that as an order of magnitude hEi ⇡ E1hn̂i1/2 (note the nonlinear de-
pendence).

Coherent states are not stationary, but rotate in the complex ↵-plane: if
| (0)i = |↵i, then | (t)i = |↵ e�i!ti. This can be shown using the expansion
of a coherent state in terms of number states:

|↵i = e�|↵|2/2
1X

n=0

↵
n

p
n!
|ni (2.29)

Note that number states with arbitrarily high photon numbers are present
in a coherent state. More specifically, we can introduce the probability
pn(↵) of finding n photons in a coherent state:

pn(↵) = |hn|↵i|2 = e�|↵|2 |↵|2n
n!

(2.30)

which is a ‘Poisson distribution’ (the probability distribution of the sum of
independent random bits). Exercise: compute the average photon number
and its fluctuations (variance) in a coherent state:

hn̂i↵ = |↵|2 , (�n)2
↵
= |↵|2 (2.31)

Note the important limiting case where the average photon number be-
comes large |↵| � 1. Then, the relative fluctuation of the photon number
becomes small: �n/hni ⇠ 1/|↵| ⌧ 1.

The field quadratures also show quantum fluctuations around their clas-
sical average in a coherent state. This is inevitable because of the Heisen-
berg inequality. In the exercises, you are asked to show that these are
equal to the quantum noise in the vacuum state (which is in fact a partic-
ular coherent state with ↵ = 0). This result can be displayed graphically
in the complex ↵-plane by the sketch shown in fig. 2.1. We shall see that
this plot gives the so-called Q-function (or Husimi function) of the state,
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∆

∆

X = 1

P = 1

X~Re

P~Im

(α)

(α)

t

|α|

−ω

Figure 2.1: Representation of a coherent state in phase space.

see Eq.(2.84) below. This function provides a way to illustrate a quan-
tum state by the analogy to the classical phase space. Note that since
a = (X + iP )/

p
2, we may identify the ↵-plane with the classical phase

space of a harmonic oscillator. The gray area in this sketch indicates values
for the position and momentum quadratures that are probable outcomes of
measurements. This representation is of course schematic since X and P

cannot be measured simultaneously. We shall give it a precise meaning in
section 2.5 where we show how coherent states can be used to expand any
field state. (There are some subtleties related to the fact that they are not
eigenstates of an hermitean operator.)

Finally, coherent states are not orthogonal. This is again a consequence
of being the eigenstate of a non-hermitean operator. Let us calculate the
overlap

h↵|�i =
X

n

e�|↵|2/2�|�|2/2
1X

n=0

↵
⇤n
�
n

n!

= exp

�1

2

⇣
|↵|2 + |�|2 � ↵

⇤
� � ↵

⇤
� + ↵�

⇤ � ↵�
⇤
⌘�

= exp

�1

2
|↵� �|2 + i Im↵

⇤
�

�
(2.32)

Here, we have split the complex overlap into its magnitude (a Gaussian
with maximum at � = ↵) and a phase factor. If we consider the Gaussian
as a function of ↵, we get a peaked function in the phase space plane, with
a typical width (the same in all directions) of the order of 1

2 or 1.
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Coherent states can be prepared by feeding the field mode with a “clas-
sical source”. This could be a classical oscillating dipole, as it happens in a
so-called “free electron laser”. Or the field of a intense laser which is often
approximated by a classical field. More details including the calculation of
the time evolution operator for a classical source follow now.

Preparation: displacement operator

How is it possible to generate a coherent state physically? One possible
answer is ‘never’ because to this end, one must be able to control the phase
of the complex number ↵, or equivalently, the origin of time (recall the
discussion before Eq.(2.29)). In practice, however, it is at least useful, if
not necessary, to think ‘as if’ the phase of a light field were controlled,
for example in a laser field. For an instructive discussion, see two papers
by Klaus Mølmer (1997) where he talks about a ‘convenient fiction’. A
physical example where it is plausible that the phase of a light field can be
controlled is the ‘free electron laser’ where a beam of electrons is modulated
in a controlled way (in a ‘wiggler’ element of an accelerator ring). The
accelerated electrons are emitting photons that are injected into a laser
cavity.

This example comes close to the following single-mode Hamiltonian

H = h̄!

⇣
a
†
a+ 1

2

⌘
+ ih̄

⇣
e�i!st ga

† � ei!st g
⇤
a

⌘
(2.33)

where the first term is the energy of our mode and the second term de-
scribes

• the coupling of a classical dipole oscillator at frequency !s with the
field mode

• or the coupling of a classical current density j(x, t) with the vector
potential of the mode (via the minimal coupling interaction).

We are going to see that classical sources generate coherent states.
In the interaction representation, the first term of the Hamilto-

nian (2.33) is transformed away and the exponentials are replaced by
e±i(!�!s)t. If we choose resonant conditions, !s = !, we thus get a
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Schrödinger equation with a time-independent Hamiltonian. The solution
is easy (still in the interaction picture)

| ̃(t)i = exp[t(ga† � g
⇤
a)]| ̃(0)i = D̂(gt)| ̃(0)i (2.34)

where D̂(↵) is the so-called displacement operator

D̂(↵) = exp(↵a† � ↵
⇤
a) (2.35)

Let us assume that the mode starts in the vacuum state, we thus find using
the Baker-Campbell-Hausdorff identity2

| (t)i = exp[t(ga† � g
⇤
a)]|0i = e�|g|2t2/2 egt a

†
e�g

⇤
t a|0i (2.36)

Now the annihilation operator gives 0 when acting on the vacuum state, so
that its exponential reduces to unity here. Expanding the exponential with
the creation operator in a power series, we find

| (t)i = e�g
2
t
2
/2

1X

n=0

(gta†)n

n!
|0i = |gti (2.37)

This interaction thus generates a coherent state with amplitude ↵ = gt that
grows linearly in time. To obtain a stationary result, either the ‘oscillator
amplitude’ g can be made time-dependent, or loss processes have to be
added.

We have just shown that coherent states can be obtained by applying a
‘displacement operator’ to the vacuum state:

|↵i = D(↵)|0i D(↵) = exp
n
↵a

† � ↵
⇤
a

o
(2.38)

This unitary operator also displaces the creation and annihilation operators
as follows (to prove by deriving a differential equation in the ‘Heisenberg
picture’, setting ↵ = gt)

D
†(↵) aD(↵) = a+ ↵ (2.39)

D
†(↵) a† D(↵) = a

† + ↵
⇤
. (2.40)

This identity is useful to show that the field quadrature fluctuations �X

and �P in a coherent state are those of the vacuum state.
2 If the commutator [A,B] commutes with A and B: eAeB = e

A+B+ 1
2 [A,B].
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The displacement operators provide a mapping from the complex num-
bers into unitary operators on the single-mode Hilbert space. Complex
numbers can be added, and operators be applied sequentially. So how do
the two operations compare? The answer lies in the equation

D(↵)D(�) = ei Im(↵�⇤)
D(↵ + �) (2.41)

that can be easily proven with the Baker-Campbell-Hausdorff formula
(footnote 2). If the phase factor were not there, this equation would make
the mapping ↵ 7! D̂(↵) a representation (Darstellung) of the additive group
in C in the space of unitary operators U(H) over the (infinite-dimensional)
Hilbert space H of the single mode: either one applies the displacement op-
erators one after the other (left-hand side) or one adds the complex num-
bers and applies a single displacement (right-hand side), one gets the same
result.

Now, there is a phase factor, involving Im(↵�⇤). The mapping ↵ 7! D̂(↵)

is then not a (‘proper’) representation, but only a projective representation.
This must be so because the additive group in C is finite-dimensional and
commutative, while the unitary operators D(↵) form a non-commutative
group and are acting on an infinite-dimensional space. And more precisely,
the generators of the two groups do not have the same algebra (a Lie alge-
bra formed by their commutators). For the additive group and its action on
C itself, the generators can be taken as unit vectors parallel to the x and
p axes. The addition of these vectors is, of course, commutative. For the
‘image’ formed by the D(↵), acting on the Hilbert space of state vectors,
the corresponding generators are (expand for small ↵ = x + ip with real
parameters x and p)

D(↵) ⇡ 1+ x(a† � a) + ip(a† + a) (2.42)

so we identify the generators (a† � a)/i and (a† + a) whose commutator
is twice i1. (One likes to choose hermitean generators, this explains the
factors i. The commutator is hermitean after multiplication with i as well.)
This means that the group structure is fundamentally different: the algebra
spanned by the generators does not close, and a proper representation is
not possible. In fact, the additional phase factor that appears in the formula
for the projective representation can be understood by enlarging the Lie
algebra (and the group) to include also the unit operator.
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To conclude, the phase factor appearing in Eq.(2.41) could be argued
to have no physical significance: after all, changing a state vector by a
(‘global’) phase does not change the quantum-mechanical predictions. But
if a superposition can be constructed where the phase appears only in one
term, then the phase becomes observable. A typical example is the ‘geo-
metric Berry phase’. We are not aware whether there is a link between this
concept and the projective phase for the displacement operators.

2.3.4 Squeezed states

You should have got the feeling up to now that the quantized field essen-
tially differs from a classical field by its (‘quantum’) fluctuations. So people
have thought whether it is possible to reduce the quantum noise in a field
quadrature to get something even ‘more classical’ – or having less noise.
This can be achieved in part, to 50%, say. Of course, one cannot beat the
Heisenberg inequality, and the reduced fluctuations in one quadrature have
to be paid by enhanced noise in the other one.

Let us consider the following unitary operator

S(⇠) = exp
⇣
⇠a

†2 � ⇠
⇤
a
2
⌘

(2.43)

Its action on the operators a and a
† is the following linear transformation

(also called Bogoliubov or squeezing transformation)

a 7! S(⇠) aS†(⇠) = µ a� ⌫ a
† (2.44)

a
† 7! S(⇠) a† S†(⇠) = µ a

† � ⌫
⇤
a

where the squeezing parameters are

µ = cosh(2|⇠|), ⌫ = ei� sinh(2|⇠|), � = arg(⇠) (2.45)

To prove Eq.(2.44), one makes the replacement ⇠ 7! ⇠t and derives a dif-
ferential equation with respect to the parameter t. (Mathematically: one
studies the one-parameter family of squeezing operators S(⇠t), a subgroup
in the group of unitary transformations.)

The squeezed state |⇠i is now defined as the ‘vacuum state’ with respect
to the transformed annihilation operator:

0 = S(⇠) aS†(⇠)|⇠i = (µ a� ⌫ a
†)|⇠i (2.46)

42



This equation combined with the assumption that the vacuum state defined
by a|vaci = 0 is unique, gives |vaci = S

†(⇠)|⇠i after fixing a phase reference
and therefore

|⇠i = S(⇠)|vaci (2.47)

because S
† is inverse to the unitary operator S. We thus get the squeezed

state by applying the squeezing operator to the vacuum state.

One can also discuss more general cases, for example a squeezed coherent state
|⇠,↵i = S(⇠)|↵i = S(⇠)D(↵)|vaci. See the book by Vogel & al. (2001) for more
details.

The squeezed state has a mean photon number

h⇠|a†a|⇠i = hvac|S†(⇠)a†aS(⇠)|vaci = · · · = |⌫|2 (2.48)

as can be shown by applying the transformation inverse to Eq.(2.44) (re-
place ⇠ by �⇠).

The photon number distribution reveals more interesting features. Con-
sider first the case of a small squeezing parameter ⇠. The expansion of
Eq.(2.47) yields

|⇠i = (1+ ⇠a
†2 � ⇠

⇤
a
2 + . . .)|vaci = |vaci+

p
2 ⇠|2i+ . . . (2.49)

so that in addition to the ordinary vacuum, a state with a photon pair
appears. This is a general feature: the squeezed (vacuum) state |⇠i contains
pairs of photons, |2i, |4i, . . . We shall see below that this can be interpreted
as the result of a nonlinear process where a “pump photon” (of blue color,
say) is “down-converted” into a pair of red photons. The unusual feature
of this “photon pair state” is that the pair appears in a superposition with
the vacuum state, with a relative phase fixed by the complex squeezing
parameter ⇠.

The expansion of the ‘squeezed vacuum’ S(⇠)|0i in the Fock (number state) basis gives
for even photon numbers the amplitudes

c2m =
(2m� 1)!!p

(2m)!
e
im� tanh

m
(2|⇠|)

cosh
1/2

(2|⇠|)
(2.50)

where � is again the phase of ⇠, and n!! is the product n(n � 2) · · · of all positive
numbers with the same parity up to n.
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The mean value of the complex field amplitude is zero in the squeezed
state, as a calculation similar to Eq.(2.48) easily shows: h⇠|a|⇠i = 0. In
the phase-space plane introduced in Fig. 2.1, the squeezed state |⇠i would
therefore be represented by a “blob” centered at zero.

The “squeezing” becomes apparent if one asks for the quantum fluctu-
ations around the mean value. Let us introduce the general quadrature
operator

X✓ =
a e�i✓ + a

† ei✓p
2

(2.51)

The familiar position and momentum quadratures X, P correspond to
phases ✓ = 0, ⇡/2. But more generally, two ‘orthogonal’ quadratures are
given by X✓ and X✓+⇡/2. The squeezed state now has fluctuations around
the vacuum state such that one quadrature component has quantum noise
below the Heisenberg limit 1/2. A straightforward calculation gives the fol-
lowing quadrature uncertainty

h⇠|�X
2
✓
|⇠i = |µ+ ⌫ e�2i✓|2

2
(2.52)

If we take 2✓ = � (the phase of the squeezing parameter), we have µ +

⌫ e�2i✓ = cosh(2|⇠|) + sinh(2|⇠|) = e+2|⇠| which becomes exponentially large
as the magnitude of ⇠ increases. For the orthogonal quadrature, one finds
an exponential reduction of the fluctuations:

�X
2
�/2 =

e+2|⇠|

2
, �X

2
(�+⇡)/2 =

e�2|⇠|

2
. (2.53)

This is the hallmark of a squeezed state. Note that the uncertainty product
is unchanged: this could have been expected as |⇠i remains a pure state.

A graphical representation is shown in Fig. 2.2 where the squeezed state
is the ellipse around the origin. As discussed for Fig. 2.1, this picture can
be made more quantitative by calculating certain phase-space distribution
functions for the different states discussed so far. This topic will be dis-
cussed in detail in part II of the lecture, the main results appear in Sec. 2.5
below.
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number

squeezed
coherent

Figure 2.2: Quantum states of the radiation field, schematically repre-
sented in the phase space plane.

Preparation of a squeezed state

How can one prepare a squeezed state? The “cheating way of it” is just a
re-scaling of the position and momentum quadratures:

X
0 = ⌘X, P

0 = ⌘
�1
P (2.54)

This generates operators X
0 and P

0 that obey the same commutation rela-
tions. However, the energy of the field mode will not be proportional to
a
0†
a
0 ⇠ X

02 + P
02, but involve terms of the form (a0)2 and (a0†)2. So the

“ground state” | i defined by a
0| i = 0 will not be a stationary state of this

Hamiltonian. This example illustrates, however, that (i) squeezed states
evolve in time and are not stationary and (ii) that the quadratic terms (a0)2

and (a0†)2 play a key role.
The second way is to find a way to add these terms to the Hamiltonian.

This can be done with a nonlinear medium. The ‘squeezing’ operator (2.43)
can be realized with the interaction Hamiltonian

Hint = ih̄
⇣
g e�2i!t

a
†2 � g

⇤ e2i!t a2
⌘

(2.55)

with the squeezing parameter given by ⇠ =
R
dt g(t). This interaction occurs

in nonlinear optics. To get a qualitative understanding, imagine a medium
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with a field-dependent dielectric constant (‘�(2) nonlinearity’). This is usu-
ally forbidden for symmetry reasons, but it happens in some special cases.
In the electromagnetic energy density, one has

u =
"(|E|)

2
E2 +

1

2µ0
B2 (2.56)

where the linearization

"(|E|) = "0 (1 + n2|E|)2 ⇡ "0 (1 + 2n2|E|)

is often appropriate. In the quantum picture, this gives a contribution to
the Hamiltonian with a term of third order in the field:

H3 = "0n2

Z

V

d3
x |E(x, t)|3 (2.57)

Let us now pick out two spatial modes of the field and put one of it into a
coherent state |↵ e�i!pti with a ‘large’ amplitude |↵| � 1. The index ‘p’ is
for ‘pump field’. Let us call the other mode (the ‘quantum’ one) the ‘signal’.
The electric field is then

E(x, t) = Epap"p e
�i(!pt�kp·x) + E1"a(t) e

ik·x + h.c. (2.58)

The interaction Hamiltonian thus generates cross terms of the form3

Hint = . . .+ h̄

⇣
g e�i!pt apa

†2 + g
⇤ ei!pt a

†
p
a
2
⌘

(2.59)

h̄g = 3"0n2EpE1"p · "⇤
Z

V

d3
x ei(kp�2k)·x (2.60)

One often ignores the quantum fluctuations of the pump mode and re-
places its annihilation operator ap by the coherent state amplitude ↵. The
interaction (2.59) then looks quite like our model Hamiltonian (2.55).

The nonlinear squeezing parameter g↵ is nonzero when the pump and
signal modes are ‘phase matched’, i.e., kp = 2k. For collinear modes, this
is achieved by taking !p = 2!. The spatial integral actually runs only over
the region where the nonlinear index n2 is different from zero. We also
see from (2.59) that one ‘pump photon’ with energy h̄!p = 2h̄! can ‘decay’

3We are actually cheating with the polarization vector ". An accurate desription re-
places n2 by a third-rank tensor that produces a scalar out of three vectors.
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into a pair of signal photons. We already anticipated this behaviour in the
number state expansion (??).

We finally get a time-independent Hamiltonian by assuming that the
pump mode is in a coherent state, ap 7! ↵p and by going into a rotating
frame at half the pump frequency, a(t) = e�i!pt/2ã(t). If one works in ad-
dition at exact resonance, the time evolution operator is U(t) = S(⇠) with
⇠ = g↵pt. In practice, one does not get infinite squeezing as t ! 1 because
of damping.

Two-mode squeezing

What we have seen so far is “one-mode squeezing”. The squeezed state can
be used to create non-classical correlations between two bright beams.

Consider the output a1,2 = (a ± b)/
p
2 of a balanced beamsplitter with

squeezed vacuum state in mode a. This gives for suitable position and
momentum quadratures the uncertainty product

�(X1 �X2)�(P1 + P2) < 1 (2.61)

because the variance of the difference, �(X1 � X2), is just related to the
squeezed variance �X < 1/

p
2 of the input mode a. The other variable

P1+P2 has a variance related to the state of input mode b, it can be brought
to a minimum uncertainty of order 1 with a coherent state in mode b. The
inequality (2.128) is not inconsistent with the Heisenberg relations because
the sum P1 + P2 and the difference X1 �X2 are commuting operators.

In other words, Eq.(2.128) tells us that the combination “squeezed
vacuum + coherent state” sent onto a beam splitter provides two beams
whose X-quadratures are correlated better than what is allowed by the
standard vacuum fluctuations (or the fluctuations around a coherent =
quasi-classical state). This is the criterion for a non-classical correlation.

Einstein, Podolski, and Rosen (1935) or “EPR” have discussed this ar-
rangement in a slightly different form and came to the conclusion that
quantum mechanics must be an incomplete theory. They mixed up, how-
ever, that the correlations we have here do not require some “instantaneous
action at a distance” between the systems A and B (the two output beams
after the beam splitter). Nonlocal correlations of this kind already appear
in classical physics: hide a red and a blue ball in two boxes, move one box
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to the moon and open it. You know immediately the color of the other box,
whereever it is. This correlation cannot be used to transmit information,
however.

Unitary operator that generates two-mode squeezing:

Sab(⇠) = exp(⇠a†b† � ⇠
⇤
ab) (2.62)

Exercise: check with single-mode squeezer (2.43) and beam splitter trans-
formation (2.76). Appears in many different situations:

• non-degenerate nonlinear media (production of correlated photon
pairs)

• normal modes of a degenerate, weakly interacting Bose gas (Bogoli-
ubov quasi-particles)

• quantum field theory in classical background fields (Klein paradox,
Hawking radiation, Unruh radiation), leading to “unstable vacuum
states”

2.4 Quantum optics of the beamsplitter

recall scattering theory
transformation rules for mode operators, for quantum states
split a single photon (generate entanglement)
two-photon interference: Hong–Ou–Mandel experiment
homodyne measurement (local oscillator)
More details on multi-mode quantum fields can be found in Sec. 2.7.

2.4.1 State transformation

A beamsplitter is the most simple way to mix two modes, see Figure 2.3.
From classical electrodynamics, one gets the following amplitudes for the
outgoing modes:

0

@ a1

a2

1

A
in

7!
0

@ a1

a2

1

A
out

=

0

@ t r

r
0

t
0

1

A

0

@ a1

a2

1

A
in

. (2.63)
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2
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2

Figure 2.3: Mixing of two modes by a beam splitter.

The recipe for quantization is now: ‘replace the classical amplitudes by
annihilation operators’. If the outgoing modes are still to be useful for the
quantum theory, they have to satisfy the commutation relations:

h
ai(out), a

†
j
(out)

i
= �ij. (2.64)

These conditions give constraints on the reflection and transmission am-
plitudes, for example |t0|2 + |r0|2 = 1. Note that this is not identical
to energy conservation for the incoming mode a1(in) [that would read
|t|2 + |r0|2 = 1]. But a sufficient condition is that the classical ‘reciprocity
relation’ (Umkehrung des Strahlengangs) holds: t = t

0.
We are now looking for a unitary operator S [the S-matrix] that imple-

ments this beamsplitter transformation in the following sense:

ai(out) = S
†
ai(in)S, i = 1, 2 (2.65)

From this operator, we can also compute the transformation of the states:
|outi = S|ini. Let us start from the general linear transformation

ai 7! Ai = Mijaj or ~a 7! ~A = M~a (2.66)

where we have introduced matrix and vector notation. For the unitary
transformation, we make the Ansatz (summation over j, k)

S(✓) = exp
⇣
i✓Bjka

†
j
ak

⌘
(2.67)
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with Bjk a hermitean matrix (ensuring unitarity). The action of this unitary
on the photon mode operators is now required to reduce to

ai 7! Ai(✓) ⌘ S
†(✓)aiS(✓)

!= Mijaj. (2.68)

Such an operation is called ‘conjugation with S’. We compute it with a trick
using a differential equation:

d

d✓
Ai(✓) = �iBjkS

†(✓)
h
a
†
j
ak, ai

i
S(✓) (2.69)

= �iBjkS
†(✓) (��ijak)S(✓) (2.70)

= iBikAk(✓). (2.71)

This is a system of linear differential equations with constant coefficients,
so that we get as solution

~A(✓) = exp(i✓B) ~A(0) = exp(i✓B)~a. (2.72)

We thus conclude that the matrix B is fixed by

M = exp(i✓B) . (2.73)

If the transformation M is part of a continuous group and depends on ✓ as
a parameter, we can expand it around unity. Doing the same for the matrix
exponential, we get

M ⇡ 1+ i✓B+ . . .

Here, B is called the generator of the set of matrices M = M(✓). The unitary
transformation is thus determined via the same generator B.

For the two-mode beam splitter, an admissible transformation is given
by

M =

0

@ t r

r
0

t
0

1

A =

0

@ cos ✓ sin ✓

� sin ✓ cos ✓

1

A . (2.74)

Expanding for small ✓, the generator is

B =

0

@ 0 �i

i 0

1

A = �2 (2.75)
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so that the corresponding unitary operator reads

S(✓) = exp
h
i✓(�ia†1a2 + ia†2a1)

i
= exp

h
✓(a†1a2 � a

†
2a1)

i
. (2.76)

Note that indeed, one has the identity

exp (i✓�2) = cos ✓ + i�2 sin ✓ =

0

@ cos ✓ sin ✓

� sin ✓ cos ✓

1

A (2.77)

Example: splitting a single photon state

What is the state of the two-mode system if one photon is incident in mode
1 on the beam splitter? Initial state |ini = |1, 0i = a

†
1|vaci. The final state is

then, using Eq.(2.76) for small ✓

|outi = S|1, 0i ⇡ |1, 0i+ ✓(a†1a2 � a
†
2a1)|1, 0i

= |1, 0i � ✓|0, 1i. (2.78)

For finite ✓, the higher powers also contribute. The calculation gets easy
with the beam splitter transformation of the creation operators.

|outi = Sa
†
1|vaci

(1)
= Sa

†
1S

†|vaci
(2)
=

⇣
a
†
1 cos ✓ � a

†
2 sin ✓

⌘
|vaci

= cos ✓|1, 0i � sin ✓|0, 1i (2.79)

In step (1), we have used that the unitary operator leaves the vacuum state
unchanged. (This is because we have written the exponent in normal or-
der.) In step (2), we have used that S implements the transformation in-
verse to S

† (unitarity). Re-introducing the transmission amplitudes, we
find

|1, 0i 7! t|1, 0i+ r|0, 1i (2.80)

so that the probability amplitudes to find the photon in either output mode
correspond exactly, for this incident one-photon state, to the classical trans-
mission and reflection amplitudes.

It is quite complicated to show in the same way the following property
of a ‘bi-coherent state’

S|↵, �i = |↵0
, �

0i,
0

@ ↵
0

�
0

1

A = M

0

@ ↵

�

1

A (2.81)
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that remains bi-coherent after the beam splitter. But the proof is quite
simple with the unitary transformation of the mode operators.

Example: splitting a two-photon state (Hong, Ou, Mandel)

Two-photon states do not behave as ‘intuitively’. Let us consider two single-
photon states incident on the same beam splitter as before, |ini = |1, 1i.
Then, by the same trick,

|outi = S|ini = Sa
†
1S

†
Sa

†
2S

†|0, 0i
= (a†1 cos ✓ � a

†
2 sin ✓)(a

†
2 cos ✓ + a

†
1 sin ✓)|vaci

= (|2, 0i � |0, 2i) sin 2✓
2

+ |1, 1i cos 2✓ (2.82)

Hence, for a 50/50 beam splitter (cos ✓ = sin ✓ or ✓ = 45�), the last term
cancels and the photons are transmitted in ‘bunches’: they come out to-
gether at either output port. There are zero ‘coincidences’ of one photon
in port a

0
1 and the other in a

0
2. This is due to a desctructive interference

between two indistinguishible histories for the two photons from source to
detector – this is called the ‘Hong-Ou-Mandel dip’. The dip in the coinci-
dence signal can be observed by tuning a parameter (like a delay time) that
makes the two photons (in)distinguishable.

2.4.2 Homodyne detection

Introduce coherent state |�i, simplest model for an intense laser beam.
Discuss output operators a± � after a beam splitter: “mixing” of signal

with “local oscillator” (= laser beam). The quadratures X✓ appear in the
“beating” (interference) when a signal mode a 7! a + � is mixed on a
beam splitter with a large-amplitude coherent state |�i (“local oscillator”,
“reference beam”). The quadrature phase can be chosen from the phase of
�, in other words, the quadratures of a are measured relative to the phase
of the local oscillator. (“Only relative phases are measurable.”)

Picture of quadratures in phase space plane for different states for signal
mode a: vacuum state, number state, coherent state.
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2.4.3 Photodetection

(see QO I lecture from WS 2015/16)
square-law detector signal (Glauber, 1960s)

I(t) = hÎ(t)i = hÊ†(t)Ê(t)i (2.83)

where the operator Ê(t) gives the positive frequency component of the elec-
tric field, evaluated at the detector position and projected onto a polariza-
tion vector that reaches the detector. The positive frequency component of
a free field operator contains all annihilation operators a. These evolve in
time as e�i!t, this motivates the name “positive frequency”. The conjugate
operator Ê†(t) is called the negative frequency component. Sometimes the
notation Ê

(�)(t)Ê(+)(t) for the intensity operator is used.
Key feature: detector signal is nonzero only when photons are present,

not in the vacuum state.
To remember: this is a “slow detector” – the derivation makes use of

time-dependent perturbation theory and to get a sizable signal, one has
to “wait” for many optical periods (to create a free electron, for example).
This is the technical reason why the mixed product of negative/positive fre-
quency operators appears and not the ordinary electric energy density, for
example. Hence: Glauber’s theory does not work for “very fast” detectors
(on the fs scale in the visible).

2.5 Phase space distribution functions

The quantum states of the radiation field can be characterized by their
behaviour in phase space. Fig. 2.1 is one example for a coherent state,
other states have been illustrated in Fig. 2.2. Can a similar picture be also
constructed for the vacuum state? Yes: the vacuum is a special coherent
state, |vaci = |0i. What about number states or thermal states?

There are several possibilities to construct distribution functions on the
‘phase space’ spanned by the quadratures X and P . This is rooted in the
fact that these are non-commuting operators.
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2.5.1 The Q-function

The overlap we calculated (2.32) motivates the following function to char-
acterize a quantum state the Husimi or Q-function

Q(↵) =
1

⇡
h↵|⇢̂|↵i (2.84)

where the meaning of the prefactor 1/⇡ will become clear soon. Each den-
sity operator ⇢̂ defines a Q-function and more generally, the Q-function just
provides an alternative characterization of the quantum state.

The Q-function has the following nice property: it is positive Q(↵) � 0

for all ↵ and any density operator ⇢̂. This directly follows from ⇢̂ being a
density operator and the coherent state |↵i being a normalizable Hilbert
space vector.

For a pure coherent state, ⇢̂ = |�ih�|, the Q-function is a Gaussian cen-
tered at ↵ = � and a spread of order unity, see (2.32).

Exercise: for a thermal state, QT (↵) is a Gaussian centered at ↵ = 0

with a width of order [hn̂iT + 1]1/2.
How would the Q-function look for a number state? A first guess is

a ‘ring’, since the photon number (or energy) is fixed and shows no fluc-
tuations. This is not far from the precise answer that we have already
calculated:

Qn(↵) = |h↵|ni|2 = e�|↵|2 |↵|2n
n!

(2.85)

where now the Poisson distribution has to be read as a function of ↵. It is
manifestly isotropic, increases like a power law |↵|2n near the origin and
decays in a gaussian manner for large ↵. The maximum indeed occurs
for |↵|2 ⇡ n. The rim of this ‘volcano distribution’ becomes narrower and
narrower as n increases.

2.5.2 The P-function

This function, also called Glauber-Sudarshan distribution provides an ex-
pansion of the density operator in the basis of coherent states. There are
two variants: the (‘simple’) P-function (Sudarshan, 1963)

⇢̂ =
Z
d2
↵P (↵)|↵ih↵| (2.86)
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(the integration measure is d2
↵ = d(Re↵) d(Im↵)) and the ‘positive P-

function’ (Glauber, 1963)

⇢̂ =
Z
d2
↵ d2

� P (↵, �⇤)|↵ih�| (2.87)

It is actually surprising that any density operator (well, there are some
restrictions) can be represented as a sum of projectors |↵ih↵| on coher-
ent states. This is related to the coherent states being not orthogonal. The
price to pay is also that the P-function P (↵) can be a quite singular distribu-
tion, containing �-functions and derivatives of �-functions. The positive-P,
P (↵, �⇤), on the contrary always exists as a regular function.

Formula by Mehta that gives P-function from density operator (taken from Lee 1991):

P (↵) = e
|↵|2

Z
d
2
�

⇡
e
|�|2+↵�⇤�↵⇤�h��|⇢|�i (2.88)

This can be used to compute the Wigner function of a number state in terms of La-
guerre polynomials.

Example: for a coherent state,

⇢̂ = |�ih�| : P⇢̂(↵) = �(↵� �) (2.89)

where the �-function is defined with respect to the integration measure:
�(↵) = �(Re↵) �(Im↵).

It is easy to see, by taking the expectation value in a coherent state, that
the Q-function is a Gaussian convolution (Faltung) of the P-function:

Q(↵) =
Z d2

�

⇡
P (�) exp(�|↵� �|2) (2.90)

This explains why the Q-function behaves always ‘less singularly’ than the
P-function.

2.5.3 The Wigner function

Traditional definition in phase space ~q = (x, p)

W (~q) =
Z dy

2⇡h̄
e�ipy/h̄

 (x+ y/2) ⇤(x� y/2) (2.91)
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In terms of (de)convolutions, the Wigner function is ‘mid-way’ between the
P- and Q-functions. It is a convolution with a Gaussian of half the width
(↵ = (x+ ip)/

p
2)

W (↵) =
Z d2

�

⇡/2
P (�) exp(�2|↵� �|2) (2.92)

The Wigner function exists always as a real-valued, regular function.
Examples. Vacuum state

W0(↵) =
exp(�2|↵|2)

⇡/2
(2.93)

Thermal state

WT (↵) =
1

⇡(n̄+ 1
2)

exp

 

� |↵|2
n̄+ 1

2

!

(2.94)

Number state (nontrivial to show, no guarantee for consistent prefactors)

Wn(↵) = 2(�1)n e�2|↵|2
Ln(4|↵|2) (2.95)

where Ln(·) is the Laguerre polynomial.4

It may become negative, however. This happens, for example, when a
wave packet  (x) is delocalised over two positions, x1 and x2, say. The
Wigner function then shows an oscillatory feature in the region x ⇡ 1

2(x1 +

x2). This is needed in order to get an oscillatory momentum distribution.
It is indeed a simple exercise to show the ‘projection formulas’

| (x)|2 =
Z
dpW (x, p) , | ̃(p)|2 =

Z
dxW (x, p) (2.96)

where  ̃(p) is the wave function in the momentum representation.
The negative regions of the Wigner function have created an of-

ten used criterion for quantum states: whenever the Wigner function is
(somewhere) negative, the state is not classical. This excludes, however,
squeezed states from being non-classical, see discussion in Sec.2.6 below.

4Eq.(2.95) with the Laguerre polynomial can be derived from Eq.(2.94) and the gener-
ating function [Eq.(18.12.13) of http://dlmf.nist.gov]

(1� z)
�1

exp

✓
xz

z � 1

◆
=
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n
,
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�h̄!/kBT and n̄+

1
2 =

1
2 (1� z)/(1 + z).
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Wigner function: provides a statistical interpretation of symmetrically
ordered averages, for example

1

2
haa† + a

†
ai =

Z
d2
↵
↵↵

⇤ + ↵
⇤
↵

2
W (↵) =

Z
d2
↵ |↵|2W (↵) (2.97)

For the vacuum state, the variance 1
2haa

† + a
†
ai is not zero because the

Wigner function has a finite width around ↵ = 0 (a disk of “vacuum fluctu-
ations”). In Eq.(2.104) for the P-function, the result is zero because P (↵)

is a �-peak centered at zero for the vacuum state (“no fluctuations”).
As a second example, any moments of a quadrature can be computed

‘in the easy way’ with the Wigner function

hXni =
Z
d2
↵ x

n
W (↵) (2.98)

because in the expansion of the operator power Xn, a symmetric sum over
the a and a

† operators appears. In this way, one can also compute the full
distribution function P (X = x) of any quadrature X which is also an exper-
imentally measurable quantity (using homodyne detection, Sec.2.4.2). The
full Wigner function can be reconstructed by combining distribution func-
tions for quadratures of several angles. This method is called ‘quantum
state tomography’.

2.5.4 Characteristic functions

Characteristic functions (moment generating functions), denoted by �(z).
Related to distribution functions by Fourier transform in the phase-space
plane, i.e. for the P-function

P (↵) =
Z d2

z

⇡2
e↵z

⇤�↵
⇤
z
�(z) (2.99)

The quantity ↵z
⇤ � ↵

⇤
z is purely imaginary and gives the natural phase

factor for the Fourier transform. The distribution functions differ to the
extent this integral exists as an ordinary function or must be re-interpreted
as a more or less singular distribution.

For the P-function, the characteristic function involves the normally or-
dered form of displacement operator

�+1(z) = h: D̂(z) :i = heza†e�z
⇤
ai = hD̂(z)i e 1

2 |z|
2

(2.100)
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where : . . . : means: write all operator products in . . . in normally ordered
form, ignoring commutators.5 Expansion in powers of ↵ and ↵

⇤ gives nor-
mally ordered operator products. Inverse Fourier transform from P̃ (↵)

gives the P-function [Eq.(2.99)], the same relation that is used for the char-
acteristic function in classical statistics.

The index +1 can be generalized to any real number s between +1 and
�1:

�s(z) = hD̂(z)i e s
2 |z|

2
(2.101)

This is called ‘s-ordering’. For s = 0, we get the generating function of the
Wigner function: indeed, the expansion of D̂(z) contains only symmetri-
cally ordered products

�0(z) = hD̂(z)i 7! W (↵) (2.102)

where the link to W (↵) involves the Fourier integral (2.99) with �0(z) in
place of �(z).

The Campbell-Baker-Hausdorff formula allows to re-order the opera-
tors in D̂(z) and to bring it in normal order, see Eq.(2.36). This gives the
relation

��1(z) = e�
1
2 |z|

2
�0(z) = e�|z|2

�+1(z) (2.103)

where ��1(z) is the characteristic function for the Q-function. This one
and �0(z) for the Wigner function are therefore smaller for large values of
↵. This implies for their Fourier transforms (the Wigner and Q-functions)
that they are “smoother” (a picture with few high k-vectors is blurred, out
of focus, unscharf). From a mathematical viewpoint, this means that the
Fourier transforms exist as ordinary functions for Wigner and Q, but that
the P-function does not necessarily exist (as an ordinary function). One
must then take recourse to the singular functions of distribution theory.

This observation was used by Lee (1991) in order to introduce a mea-
sure of ‘non-classicality’ of a state: find the smallest parameter �1  s  +1

such that the back transform of �s(z) still exists (not only as a function not
more singular than a �-function, but also as a positive distribution). For a
squeezed state, the Wigner function (s = 0) exists as a positive distribu-
tion. But for any value s > 0, one can find a direction in phase space where

5This is a subtle issue. Example: :a†a : = :aa
†
: = a

†
a.
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the back transform does no longer exist: this threshold is simply related to
one quadrature having a variance below the vacuum level, �X

2  1
2 . This

criterion can also be used to characterise ‘squeezed thermal states’.

2.6 Nonclassical states, correlations, and en-
tanglement

2.6.1 Nonclassical states

Long tradition in this area: Arbeitsgruppe Nichtklassische Strahlung led by
Harry Paul at HU Berlin.

• more information about phase-space distribution functions in Sec. 2.5.
Definition of Sudarshan (1963): any state whose P-function is regular

(not more singular than a �-function) has a classical interpretation. Con-
versely: a state is ‘non-classical’ if its P-function is singular (i.e., more sin-
gular than a �-function).

Related to representation of normally ordered averages as integrals over
the P-function, for example:

ha†ai = . . . =
Z
d2
↵↵

⇤
↵P (↵) (2.104)

If P (↵) � 0 and not more singular than a �-function, we can read this inte-
gral as a classical average over “existing values” ↵ and ↵⇤ for the operators
a and a

†. This works only if the operators are in normal order, of course.
This is not a real restriction, however, since any observable can be brought
into normal order using the commutation relations.

Formula for variances with vacuum-value subtracted: this is an alterna-
tive definition of normal order. Indeed, it is easy to check for a quadrature
X

(�X)2 � (�X)2vac = h: (X � hXi)2 :i (2.105)

The correspondence between normally ordered operators and their aver-
ages with respect to the P-function now implies

(�X)2 � (�X)2vac = h: (X � hXi)2 :i =
Z
d2
↵ (x� x̄)2P (↵) (2.106)
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where x = (↵ e�i✓ + ↵
⇤ ei✓)/

p
2 is the ‘classical version’ of the quadrature

operator [see Eq.(4.49)] and x̄ = hXi. Note the positive quantity (x � x̄)2

under the integral over the P-function. As long as the P-distribution is regu-
lar, the result will be positive. Conversely, a squeezed state whose variance
is below the vacuum value cannot have a regular P-function. According
to this criterion for ‘being non-classical’, a squeezed state is indeed non-
classical.6

2.6.2 Gaussian states

This is a class of states that is ‘closed’ under typical operations that appear
in quantum optics. We provide the discussion in terms of the Wigner func-
tion because of the simple relation (2.102) for its characteristic function
�0(z). In the following, we write simply �(z).

Gaussian states are those whose Wigner function is a Gaussian. They are
completely characterised by their average positions in phase space

h↵i = hX + iP ip
2

(2.107)

and their covariance matrix C with components (Q1 = X and Q2 = P , for
example)

Cij =
1

2
hQiQj +QjQii � hQiihQji (2.108)

This is a positive matrix, i.e., for all phase-space vectors ~x

xiCijxj = �(~x · ~Q)2 := h(~x · ~Q)2i � h~x · ~Qi2 � 0 (2.109)

Note that the linear combination ~x · ~Q is a (real) quadrature operator if ~x
is suitably normalized.

Examples. Coherent states are gaussian, squeezed states, too. Thermal
states are also gaussian, but number states are not.

For gaussian states, the Wigner function is necessarily positive. If we de-
fine a non-classical state to have a (somewhere) negative Wigner function,

6Note that the reference to the vacuum (ground) state implies that natural units for
the X- and P -quadratures exist. This is why the ‘cheating way of squeezing’ with a simple
re-scaling [see Eq.(2.54)] actually corresponds to a physical transformation.
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then a squeezed state would be classical. This observation calls for a refined
definition of ‘non-classical’. Indeed, an earlier definition by Glauber and
Titulaer proposed that one should check whether the P-function (not the
Wigner) function is either negative or more singular than a �-function. We
shall see that according to this criterion, squeezed states are non-classical.
See also Lee (1991) and Vogel (2000) (including the comment by Diósi)
for a discussion of this point.

2.6.3 Gaussian operations

. . . are those manipulations on a quantum system that maintain the gaus-
sian character of its state. Most operations in linear optics are gaussian:

– displacements = mix with coherent state at a beam splitter

– rotation = free time evolution

– squeezing = nonlinear optics operation with a coherent pump beam (see
page 46)

– thermalize in contact with a bath

– ‘mix and trace out’ = mix with another beam at a beam splitter and discard
the other output of the beamsplitter

For the last operation, one needs two beams. Gaussian states for multiple
modes are defined in a similar way, using mean values and covariance ma-
trices. When the ‘other beam’ is ‘traced out’, one keeps only the sub-block
of the covariance matrix that is relevant to the (transmitted signal) beam
(= one output of the beamsplitter).

One can show that even a beamsplitter with a ‘vacuum input’ (no
light, just vacuum fluctuations) mixes additional fluctuations into the signal
beam. In this way, the squeezing can be reduced, for example. Conversely,
a coherent state can be squeezed when a ‘squeezed vacuum’ is used as the
other input of the beam splitter (see the Sec.2.4.2 on homodyne detection).

2.6.4 Gaussian state transformations

Work with characteristic Wigner function

�(z) = hD(z)i (2.110)
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If the state transforms with an operator S, then we have

�(z) 7! hS†
D(z)Si = hexp(zS†

a
†
S � S

†
aSz

⇤)i (2.111)

For a displacement operator S = D(↵), we have S
†
aS = a+ ↵, and we get

�(z) 7! hexp[z(a† + ↵
⇤)� (a+ ↵)z⇤)i = �(z) exp(z↵⇤ � ↵z

⇤) (2.112)

The exponent appearing here is a pure phase that we have seen a few
times before. In this section, we use a mapping to classical phase-space
coordinates to provide a more geometric interpretation. Re-name the real
and imaginary parts z = (x + iy)/

p
2 and introduce the vector ~x = (x, y).

Similarly for ↵ and ~↵. Then,

z↵
⇤ � ↵z

⇤ = i(y↵x � x↵p) (2.113)

This is a bilinear and antisymmetric form on phase space for which we
introduce the notation

~x ^ ~↵ = x↵p � y↵x (2.114)

This is called the ‘symplectic form’ in analytical mechanics. It gives the
area (with a sign) of the rectangle spanned by the phase-space vectors ~x
and ~↵. It can be computed from the three-dimensional vector product, and
this is the reason for the ‘wedge’ notation ^ (used in France for the vector
product, in mathematics for outer products between differential forms).
The characteristic function �(z) thus changes by a phase factor involving
the symplectic form between the function argument ~x and the displacement
~↵:

displacement: �(~x) 7! �(~x) e�i~x^~↵ (2.115)

We now take the Fourier back transformation to the Wigner function.
The integral to perform is

W (~q) =
Z d2

z

⇡2
eqz

⇤�q
⇤
z
�(z) (2.116)

where the exponential is actually a ‘symplectic Fourier phase’ according to
q = (qx + iqp)/

p
2 and ~q = (qx, qp)

qz
⇤ � q

⇤
z = i~x ^ ~q (2.117)
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The Fourier integral for the transformed Wigner function becomes

W (~q) 7!
Z d2

x

2⇡2
ei~x^~q�(~x) e�i~x^~↵ (2.118)

which is simply the Wigner function shifted in phase space:

W (~q) 7!
Z d2

x

2⇡2
ei~x^(~q�~↵)

�(~x) = W (~q � ~↵) (2.119)

See how the Wigner function is displaced ‘en bloc’ without changing its
shape. One can in this way define ‘coherent squeezed’ or ‘coherent ther-
mal’ states by starting from nontrivial initial states. In terms of the Wigner
function, the operation is almost trivial, while expansions in number states
etc. generate quite involved algebra.

We now consider ‘symplectic transformations’ that are such that (i) the
phase space operators are transformed in a linear way and (ii) this mapping
preserves the symplectic form.

(i) The operator on the Hilbert space S is required to generate a linear
map for the quadrature operators:

i = x, p : S
†
QiS =

X

j

MijQj , or S
† ~QS = M ~Q (2.120)

(ii) The matrix M is such that the area spanned by two phase space vectors
is unchanged (symplectic transformation) (often we drop the parentheses)

(M~x) ^ (M~y) = M~x ^M~y = ~x ^ ~y (2.121)

What happens to the characteristic function? Observe that the operators
in the exponent can be written as a symplectic form7

�(~x) 7! hS† exp(za† � az
⇤)Si = hS† exp(�i~x ^ ~Q)Si (2.122)

so that the preceding properties (i) and (ii) yield

hexp(�i~x ^ S
† ~QS)i = hexp(�i~x ^M ~Q)i = hexp(�iM�1

~x ^ ~Q)i (2.123)
7If the symplectic form is defined for operators with the opposite order of factors in the

two terms, then one even has ~Q ^ ~Q = i from the commutation relation between X and
P .
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The mapping of the characteristic function is therefore simply a composi-
tion (Hintereinanderausführung):

�(~x) 7! �(M�1
~x) (2.124)

with the inverse symplectic transformation.
Now to the Wigner function. The Fourier integral (2.116) is, using the

substitution8
~x = M~x

0

W (~q) 7!
Z d2

x

2⇡2
ei~x^~q�(M�1

~x) =
Z d2

x
0

2⇡2
eiM~x

0^~q
�(~x0) (2.125)

Using the same trick to shift the symplectic matrix onto the other factor in
the wedge product, this becomes (again!)

W (~q) 7!
Z d2

x
0

2⇡2
ei~x

0^M�1
~q
�(~x0) = W (M�1

~q) (2.126)

This expression shows how the phase-space coordinates are first trans-
formed under M�1 and then the (‘old’) Wigner function is evaluated. This
is squeezing or rotating the Wigner function, preserving its ‘footprint’ in
terms of phase-space area. In particular the normalization is preserved:

1 =
Z
d2
qW (~q) (2.127)

Starting from the vacuum state, one can thus construct a whole set of
gaussian states. It requires a bit of Lie group analysis to check that any
gaussian state can be reached.

2.6.5 Entanglement and correlations
(Material not covered in SS 16.)

Entanglement is a property of two observables A and B or of two subsystems described
by A and B. The two subsystems are called entangled when A and B show “non-classical
correlations”, i.e., correlations that cannot be explained by classical statistics.

This formulation is similar to the negative (or singular) values of certain quasi-
probabilities. When these cannot be interpreted as classical probabilities, we encounter
non-classical states. The examples discussed below illustrate for example that squeezing
in one mode can be used to entangle two modes – the “non-classicality” of one input state
is a “resource” that provides “entangling power”.

8Whose Jacobian is 1 because one can show that for symplectic matrices, detM = 1,
since the preserved area is simply the determinant.
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EPR correlations

Section appears already earlier, in Sec. 2.3.4.

Output a1,2 = (a ± b)/
p
2 of a balanced beamsplitter with squeezed vacuum state in

mode a. This gives for suitable position and momentum uncertainties

�(X1 �X2)�(P1 + P2) < 1 (2.128)

because the variance of the difference, �(X1�X2), is just related to the squeezed variance
�X < 1/

p
2 of the input mode a. The other variable P1 + P2 has a variance related to

the state of input mode b, it can be brought to a minimum uncertainty of order 1 with a
coherent state. The inequality (2.128) is not inconsistent with the Heisenberg relations
because the sum P1 + P2 and the difference X1 �X2 are commuting operators.

In other words, Eq.(2.128) tells us that the combination “squeezed vacuum + co-
herent state” sent onto a beam splitter provides two beams whose X-quadratures are
correlated better than what is allowed by the standard vacuum fluctuations (or the fluctu-
ations around a coherent = quasi-classical state). This is the criterion for a non-classical
correlation.

Einstein, Podolski, and Rosen (1935) or “EPR” have discussed this arrangement in a
slightly different form and came to the conclusion that quantum mechanics must be an
incomplete theory. They mixed up, however, that the correlations we have here do not
require some “instantaneous action at a distance” between the systems A and B (the two
output beams after the beam splitter). Nonlocal correlations of this kind already appear in
classical physics: hide a red and a blue ball in two boxes, move one box to the moon and
open it. You know immediately the color of the other box, whereever it is. This correlation
cannot be used to transmit information, however.

Bell correlations

The reasoning of EPR has been made more precise by John Bell (1987) who invented a
systematic way of deriving inequalities (upper limits) to correlations between observables
A and B. The “classical” assumption is that these take definite values (those that appear as
outcomes of single measurements), but determined by some other “hidden variables” that
obey classical statistics. If these “hidden variable theories” are formulated in a non-local
way, any quantum correlation can be reproduced. But this would require assumptions that
are not natural from the “local” viewpoint that has become familiar to us from relativity.
An example of a local hidden variable theory provides an upper limit to spin correlations
measured on two two-level systems with spin operators �⌦1 (system A) and 1⌦� (system
B). More precisely, let us take four unit vectors: n, n0 (for system A) and m, m0 (for
system b). One assumes that all the observables n·� have determined (although unknown)
values ±1 corresponding to the possible outcomes of measurements (the eigenvalues ±1).
Then the following inequality holds for a hidden variable theory (Clauser, Horne, Shimony,
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and Holt 1969)

|hn · � ⌦m · �i+ hn0 · � ⌦m · �i+ hn0 · � ⌦m0 · �i � hn · � ⌦m0 · �i|  2 (2.129)

where the pattern of signs is to be noted. One central idea in the proof is that one can
“locally choose” between n and n0 (i.e. two different components of the Bloch vector for
system A), and that the outcome for system B is not affected by this choice (this is a “local
theory of hidden variables”).

A classical, perfect correlation can always be achieved between detectors in a fixed
direction, n = m, say. This is within the scope of the CHSH inequality (2.129), however.
Take for example n · � = �3 with eigenstates |ei, |gi and consider the statistical mixture

⇢ =
1

2
(|e, gihe, g|+ |g, eihg, e|) (2.130)

Then perfect anti-correlation holds h�3 ⌦ �3i = tr [(�3 ⌦ �3) ⇢] = �1. This does not pro-
duce any correlations for the Bloch components �1,2, however. Check that one gets for the
CHSH correlation

CHSH = �n3m3 � n
0
3m3 � n

0
3m

0
3 + n3m

0
3

= �(n3 + n
0
3)m3 � (n

0
3 � n3)m

0
3 (2.131)

Let us look for the maximum value of this expression. The components of the unit vectors
are in the range �1 . . .+ 1. For �1  n3 < n

0
3 < 0, both parentheses are negative, and we

get a maximum by choosing m3 = m
0
3 = 1. But then, CHSH = �2n

0
3  2. Along similar

lines, one can prove the inequality (2.129).
The power of this reasoning is that the inequality applies to any choice of state, i.e.,

of choice of “hidden variables” or classical correlations between the outcomes.
Quantum mechanics gives a different answer, however, sometimes. Take the “maxi-

mally entangled state”

| i = 1p
2
(|e, gi � |g, ei) (2.132)

whose density operator | ih | differs from Eq.(2.130) because of the off-diagonal terms
|e, gihg, e|. In this state, one has the perfect anti-correlation

h |n · � ⌦ n · �| i = �1 (2.133)

in any choice of basis n. (This is related to the “singlet” or zero total spin character of the
state | i.)9 For two different orientations at A and B, one gets the result

h |n · � ⌦m · �| i = �n ·m (2.134)

9 The form of the state | i in a different cartesian basis for the spin vectors � is gen-
erated by the three operators �i ⌦ 1 + 1 ⌦ �i) (i,= 1, 2, 3). However, their action on | i
gives zero: hence | i is invariant under rotation (a “singlet state”). Hence the perfect
anticorrelation for the components �3 ⌦ �3 carries over onto any direction.
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where n ·m is the standard scalar product. The CHSH correlation then becomes

CHSH = �(n+ n0
) ·m� (n0 � n) ·m0 (2.135)

which can be maximized by choosing a suitable “tetrad” of unit vectors10 up to a value
2
p
2. The range of CHSH correlations

2 < |CHSH|  2

p
2 Bell inequality violated (2.136)

is therefore called the “non-classical” domain which cannot be interpreted in terms of a
classical theory (more precisely: a local hidden variable model). The number |CHSH|� 2

can be taken as a quantitative measure of entanglement between system A and B: it
quantifies the degree of “non-classicality” of the correlations between A and B.

Further reading

On entanglement between quadratures or position and momentum variables in general
(so-called “continuous variables”), and in gaussian states in particular, see Eisert & Plenio
(2003) and Plenio & Virmani (2007). An introduction to the EPR paradox and applica-
tions: Reid & al. (2009).

2.7 Two modes, many modes
(Material not covered in SS 16.)

2.7.1 Multi-mode Hilbert space and observables
The state space of a two-mode field is the tensor product of the Fock spaces of two har-
monic oscillators. In terms of number states, the basis vectors of this space can be written

|n1;n2i = |n1imode 1 ⌦ |n2imode 2

where the first mode contains n1 and the second mode n2 photons. These states are called
‘product states’. That have expectation values of products of operators pertaining to mode
1 and 2, that factorize, e.g.,

hn̂1n̂2i = hn̂1ihn̂2i.

10 Exercise: choose m and m0 opposite to the directions of n ± n0, respectively. Then
CHSH =

p
2 + 2 cos ✓ +

p
2� 2 cos ✓ with cos ✓ = n · n0. This quantity varies between 2

and 2
p
2. The maxima are obtained for cos ✓ = 0, hence orthogonal directions n and n0.

The directions m and m0 are then orthogonal as well, and one bisects that angle between
n and n0.
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But due to the possibility of forming superpositions, there is much more ‘space’ in
the multi-mode Hilbert space. For example, it is possible that two modes ‘share’ a single
photon:

1p
2
(|0; 1i+ |1; 0i) (2.137)

This state is called ‘entangled’ if no change of basis for the mode expansion exists such that
the state is mapped onto a product state (this may be very difficult to check in practice).11

The state is by no means unphysical, however, since it is generated by

1p
2
(a

†
1 + a

†
2)|0; 0i (2.138)

where |0; 0i is the two-mode vacuum. Such sums of creation operators occur always in the
mode expansion of the quantized field. The decay of an excited atomic state, for example,
generates a continuous superposition of one-photon states where an infinite number of
modes share a single photon.

Many-mode single-photon states are also generated when an atom is illuminated by a
single photon: the scattering of this photon by the atom generates, as in the classical elec-
tromagnetic theory, a continuous angular distribution of modes with a nonzero amplitude
for one-photon excitations.

Finally, what about the density matrix for a multi-mode field? Let us start with the
simple case of two modes of the same frequency in thermal equilibrium. According to the
general rule, the density matrix is a sum of projectors onto the stationary states |n1;n2i of
the two-mode system, each weighted with a probability proportional to e

��(n1+n2). (Use
� = h̄!/kBT .) Since the energy is made additively from single-mode energies, we can
factorize this density operator:

⇢̂ = Z
�1
X

n1,n2

e
��(n1+n2) |n1;n2ihn1;n2|

= Z

X

n1

e
��n1 |n1ihn1|⌦

X

n2

e
��n2 |n2ihn2|

= Z
�1
⇢̃1 ⌦ ⇢̃2 (2.139)

where the ⇢̃1,2 are un-normalized density matrices. The tensor product of the projectors is
defined by coming back to the tensor product of states

|n1ihn1|⌦ |n2ihn2| = (|n1i ⌦ |n2i) (hn1|⌦ hn2|) .

The trace of the two-mode density matrix (2.139) also factorizes because the matrix ele-
ments of a tensor product operator are, by definition, the products of the individual matrix
elements

tr (⇢̂) = Z
�1
X

n1,n2

hn1;n2|⇢̃1 ⌦ ⇢̃2|n1;n2i

11It is simple to see, however, that the expectation value of n̂1n̂2 does not factorize.
Indeed, hn̂1i = 1

2 = hn̂2i while hn̂1n̂2i = 0 since in each component of the state (2.137),
at least one mode has zero photons.
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= Z
�1
X

n1,n2

hn1|⇢̃1|n1ihn2|⇢̃2|n2i

= Z
�1

(tr ⇢̃1) (tr ⇢̃2) (2.140)

and therefore Z = Z1Z2 = (1� e
��

)
�2.

Since the density matrix of this thermal two-mode state factorizes, this state is not
entangled (averages of products of single-mode operators factorize). This is no longer
true, however, if we allow for an interaction between the modes. Then the energy is
no longer a sum of single-mode energies, and the previous factorization does no longer
work. This is by the way a general rule: interactions between quantum systems lead to
entangled states. For this reason, entangled states are much more frequent in Nature than
are factorized states. It is a nontrivial task, however, to decide whether a given density
matrix describes an entangled state or not.

2.7.2 Digression (Einschub): tensor product states and
operators

It is somewhat tricky to guess the right formulas for multimode field states and operators.
The general rule is the following:

Field operator $ sum of modes
Field state $ product of modes

For example, the electric field operator for a two-mode field is given by

E(x, t) = E1"1a1(t) e
ik1·x + E2"2a2(t) e

ik2·x + h.c.

while a typical state is for example the product state |n1;n2i = |n1i ⌦ |n2i. The general
rule gets complicated (1) when we allow for superpositions (sums) of product states and
(2) when we consider measurements that involve products of different mode operators.

In calculations, one often needs products of operators, like E2
(x, t). These are com-

puted in the usual way, one has just to take care that operators sometimes do not com-
mute. But this is only relevant for operators acting on the same mode, [a1, a

†
1] = 1, while

for different modes
[a1, a

†
2] = 0

because they correspond to independent degrees of freedom.

Operator averages in product states. Let us consider the average electric field
for the two-mode case written above. Using the mode expansion, we find terms like hai(t)i
(i = 1, 2) and their adjoints. Now the operator a1| i is evaluated by letting a1 act on the
first factor of a product state:

a1|n1;n2i = (a1|n1i)⌦ |n2i
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If | i is a sum of product states (entangled state), then this procedure is done for every
term in this sum. Sometimes this is formalized by writing the operator as a1 ⌦ 1, thus
indicating that for the second mode nothing happens. The action of such operator tensor
products is apparently defined as

A1 ⌦B2|n1;n2i = A1|n1i ⌦B2|n2i (2.141)

by letting each operator factor act on the respective state factor. This notation allows
to avoid the subscripts 1 and 2 as the relevant mode is indicated by the position in the
operator product.

Similarly, the scalar product of tensor products of states is defined by

hn1;n2|m1;m2i = hn1|⌦ hn2|m1i ⌦ |m2i = hn1|m1ihn2|m2i

by taking the scalar product of the corresponding factors.
The average of the electric field for a product of number states is thus zero, as for

a single-mode field, because hn|ani = 0, and this is true for both modes. What about
a product state of two coherent states, | i = |↵;�i? It is simple to see that we get the
classical result (we assume that both modes have the same frequency !)

hE(x, t)i = E1"1↵ e
�i!t+ik1·x + E2"2� e

�i!t+ik2·x + c.c. (2.142)

(Note that ‘c.c.’ and not ‘h.c.’ occurs.) As a general rule, classical fields can be described
by tensor products of coherent states.

Last example where we go quantum: a superposition of coherent product states,

| i = c|↵;�i+ d|�;↵i

with some complex amplitudes c, d. Then we find

ha1i = |c|2↵+ |d|2�

if h↵|�i = 0. (This is actually never exactly the case, but can be achieved to a very good
precision if |↵ � �| � 1.) This result is an average over the two possible coherent ampli-
tude, weighted with the corresponding probabilities. The average field thus becomes:

hE(x, t)i = E1"1
�
|c|2↵+ |d|2�

�
e
�i!t+ik1·x + E2"2

�
|c|2� + |d|2↵

�
e
�i!t+ik2·x + c.c.

Question: this result does not allow to distinguish this state from an ‘incoherent mixture’
of coherent product states like in (2.142), each state occurring with a probability |c|2, |d|2.
This mixture would be described by the density operator

⇢̂mix = |c|2|↵;�ih↵;�|+ |d|2|�;↵ih�;↵|

and gives the same average electric field (exercise). If the coherent amplitudes ↵, � are
closer together, then due to the nonzero overlap h↵|�i, one can distinguish superposition
and mixture (exercise). Are there observables that can make the difference in the case
h↵|�i = 0?
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Average of single-mode operator. Let us calculate as another example the av-
erage photon number in mode 1 for a two-mode field in the entangled state (2.137).
The relevant photon number operator is given by a

†
1a1 or, to be more precise, a†1a1 ⌦ 1.

Its action on the entangled state is worked out using linearity and the operator product
rule (2.141)

1p
2
a
†
1a1 ⌦ 1 (|0; 1i+ |1; 0i)

=
1p
2

⇣
a
†
1a1|0i ⌦ |1i+ a

†
1a1|1i ⌦ |0i

⌘

=
1p
2
|1i ⌦ |0i = 1p

2
|1; 0i

Taking the scalar product with the original state, we find

hn̂1i =
1

2
(h0; 1|+ h1; 0|) |1; 0i = 1

2
.

Once you have done this calculation, you can use the shorter rule: all we need are the
probabilities of having n1 = 0, 1, . . . photons in mode 1. For this, collect all product states
in the state with the same number of photons n1 and compute the squared norm of these
states. From the probabilities for n1 photons, you get the average photon number.

Product operators. As a second example, let us compute the average value of the
product a

†
iaj (i, j = 1, 2) in a thermal two-mode state. This object occurs when you

measure the two-mode field with a photodetector (see paragraph ?? below). The tensor
product notation is more cumbersome here and gives

a
†
1a1 ⌦ 1 or 1⌦ a

†
2a2 or a

†
1 ⌦ a2 or a1 ⌦ a

†
2.

The density matrix is a tensor product of thermal single-mode density matrices. We shall
see that the result is:

ha†iajiT = �ij n̄(T ) (2.143)

where n̄(T ) is the average photon number in a single mode. How does this come about?
When i = j, we are left with the calculation of the average photon number for a single

mode:
ha†iai i =

X

n1,n2

hn1;n2|a†iai ⇢̂1 ⌦ ⇢̂2|n1;n2i

The action of the product density operators factorizes:

⇢̂1 ⌦ ⇢̂2|n1;n2i = ⇢̂1|n1i ⌦ ⇢̂2|n2i

Each single-mode density operator, acting on a number state, gives the corresponding
occupation probability:

⇢̂1|n1i =
X

m1

pm1(T )|m1ihm1|n1i = pn1(T )|n1i,
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so that we have, using the result for the photon number of one mode

ha†iai i =

X

n1,n2

pn1(T )pn2(T )hn1;n2|a†iai |n1;n2i

=

X

n1,n2

pn1(T )pn2(T )ni

=

X

ni

pni(T )ni

X

nj

pnj (T )

In the last step, we have noted that the double sum can be factorized (j 6= i is the other
index). The second sum gives unity because the probabilities are normalized, the first
sum gives the average photon number n̄(T ) at temperature T and does no longer depend
on the mode label (this is because we assumed equal frequencies for both modes). This
completes the proof in the case i = j.

A similar calculation shows that the average of a†1a2 vanishes: indeed, we have

hn1;n2|a†1a2|n1;n2i = hn1|a†1|n1ihn2|a2|n2i = 0.
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