
Chapter 2

Quantum states of light

Vorläufige Fassung vom 08 Mai 2020. Soll ab und zu aktualisiert werden.

2.1 Wigner & co: phase space distributions

The states of a quantum system can not only be characterized by their wave
functions (or density operators), but also by their behaviour in phase space.
Fig. 2.1 is one example for a coherent state, other states known in quantum
optics are illustrated in Fig. 2.3.

There are several possibilities to construct distribution functions on the
‘phase space’ spanned by the quadratures X and P . This is rooted in the
fact that these are non-commuting operators.
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Figure 2.1: Q-function of a coherent state in phase space.
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2.1.1 The Wigner function

The traditional definition in phase space is

W (x, p) =
Z dy

2⇡øh
e�ipy/h̄

 (x + y/2) ⇤(x� y/2) (2.1)

where  (x) is the wave function of a system.
Remember that phase space is spanned by position x and momentum

p, a pair of canonically conjugate coordinates. In quantum optics, the elec-
tric and magnetic field amplitudes of one mode provide another example.
Two quadratures, shifted in phase by 90�, are another choice. In the fol-
lowing, we use the language of ordinary quantum mechanics and stick to
a one-dimensional ‘configuration space’ (the number of dimensions of the
x-variable).

The definition (2.1) tries to capture information from both variables:
with respect to x, the position distribution. The integral over y tries to
include aspects of the momentum distribution.

Wigner function is real:

W
⇤(x, p) =

Z dy
2⇡øh

eipy/h̄ ⇤(x + y/2) (x� y/2)

=
Z dy

2⇡øh
e�ipy/h̄

 
⇤(x� y/2) (x + y/2) (substitute y 7! �y)

= W (x, p) (2.2)

Simple exercises.

1. A Gaussian wavepacket,  (x) = N exp(ikx � x
2
/4�2) gives a Wigner

function which is a double Gaussian,

W (x, p) = N
0 exp(�x

2
/2�2 � a(p� øhk)2) (2.3)

with constants N
0 and a to be calculated. Are there nicer choices for the

exponent x2
/4�2 in the Gaussian? Observe that this is a “minimum uncer-

tainty” wave packet, i.e., ! x! p ⇠ øh.
2. A wave function that is odd in x, as it happens for stationary states

in symmetric potentials, gives a Wigner function that is strictly negative for
x = 0 = p.
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3. The integral of the Wigner function over all momenta p gives the
position distribution

| (x)|2 =
Z

dpW (x, p) (2.4)

This can be visualised as the “shadow” of the Wigner function, represented
in three dimensions as a “landscape” on the phase space plane, the shadow
being cast on the x-axis. This picture is not completely correct because the
integral is a sum, and we shall see that positive and negative values of W
may combine to zero here.

Examples from molecular physics.

The following picture illustrates the vibrational states of a bi-atomic
molecule.

Note the asymmetric shape of the potential (black line): this is typical
for a covalent bon – as the nuclei move apart, the electronic wave func-
tions overlap less, the binding force is getting smaller. As they move closer
together, Coulomb and Pauli repulsion make the bond ‘stiffer’.

These states live on an “excited potential surface” where the electronic
wave function differs from the ground state. The red curve illustrates the
ground state in the ground-state potential. With a short laser pulse (du-
ration of a few fs only), one can excited the molecule and “lift the wave
packet” of the nuclei onto the excited potential. There, it can be expanded
over some eigenstates (the corresponding amplitudes are illustrated by the
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red bars on the side). The wave packet is thus not a stationary state, and it
will oscillate back and forth in the potential. Its average energy is given by
the black line.

Wigner function of the wave packet after a few oscillations. The oval
lines are contours of constant energy. A classical particle in this potential
would move along one of these lines. The energy of the blue line corre-
sponds to the mean energy of the wave packet (black line above). One sees
that the wave packet is split in two or three components: two of them (blue
shade, positive values) are located at the “turning points” (the momentum
p) is around zero. The colored structure in the middle is called the “ghost
component”. One can show (see exercise below) that whenever one tries
to measure the particle in this region of phase space (this can be done by
computing the overlap with a Gaussian wave packet of Exercise 1. above),
the probability of finding the particle there is zero. The Indian physicist
Sudarshan has used the word “Tamas component” from a Hindu concept of
“dark” or “empty”.

If we compute the projection of the Wigner function onto the position
axis, it turns out that one finds two maxima at the turning points, and the
red-blue shaded area gives zero. This projection is a degenerate form of
computing the overlap with a very elongated wave packet (very narrow in
x, very wide in p).

The momentum distribution is given by a formula similar to (2.4)

| ÷ (p)|2 = N

Z
dxW (x, p) (2.5)

where ÷ (p) is the Fourier transform of  (x) and the normalisation N de-
pends on the convention for the Fourier transform. One find by projecting
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the Wigner function above that the momentum distribution shows oscilla-
tions. This can be interpreted as the interference pattern from two slits –
indeed, this pattern is the Fourier transform of the wave function. The pos-
itive and negative values of the ghost component are thus related to quan-
tum interference, they produce the characteristic bright and dark fringes.

Exercise 4. Choose your favourite convention for the Fourier transform
and compute N .

The two pictures here give the Wigner function (with a different color
scheme) a quarter of the period T later.

The two maxima of the wave packet have moved to large and small
momenta, and the orientation of the colored fringes has changed. Now the
position distribution shows fringes, while the momentum distribution has
two peaks. In optics, this would correspond to two light beams that from
some angle and that are brought to interfere. In their overlap region, the
sum of waves going to the right and left produces a standing wave with a
modulated intensity in position.

The following picture gives the Wigner function of a stationary state,
here an odd eigenstate with quantum number ⌫ = 3 in the excited state
potential. (Since the potential is not exactly symmetric, the eigenstate is
not exactly odd, although this is difficult to see from the wave functions
above.)
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See that now the red and blue fringes have a different pattern: they
are organised along contours of constant energy. The middle, solid contour
that is drawn here corresponds to the energy eigenvalue of this state, the
outer and inner contours to the neighboring eigenvalues. In the center, the
red spot marks a region of negative values for the Wigner function.

Exercise 5. Show that the squared overlap between two wave functions
 1 and  2 is related to an overlap integral between their Wigner functions
W1 and W2:

|h 2| 1i|2 = N

Z
dxdpW1(x, p) W2(x, p) (2.6)

and compute the constant N . This formula is the overlap theorem
mentioned above: the integral of a Wigner function with a minimum-
uncertainty Gaussian is positive. The theorem is, by the way, the math-
ematical expression of a principle that is often used in statistical physics: if
we want to “count” how many quantum states can be put into some region
of phase space, then each state occupies an “area of order 2⇡øh”.

For the stationary states of a harmonic oscillator, the Wigner function
can be computed explicitly. This calculation is nontrivial, and the formula
gives no guarantee for consistent prefactors

Wn(x, p) = ( �1)n e�x
2�p

2
Ln(2x2 + 2p2) (2.7)

where Ln(·) is the Laguerre polynomial.1 This is written in dimensionless
coordinates for the harmonic oscillator (øh = m = ! = 1). See Fig.2.2
where we have set |↵|2 = ( x2 + p

2)/2.
1Eq.(2.7) with the Laguerre polynomial can be derived from Eq.(2.34) and the gener-
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Figure 2.2: Radial cut through the Wigner function of the stationary states
of a harmonic oscillator (Fock states or number states in quantum optics).

Exercise 6. The Wigner function is the “Fourier transform of the expecta-
tion value of a displacement operator”:

W (x, p) =
Z dkds

(2⇡)2øh
h öD(k, s)i exp[i(kx� ps/øh)] (2.8)

öD(k, s) = exp[�i(köx� öps/øh)] (2.9)

where öx, öp are the position and momentum operators.

(a) To prove this relation, use the Baker-Campbell-Hausdorff relation2 for operators A
and B

e
A+B

= e
� 1

2 [A,B]
e
A
e
B (2.10)

that both commute with their commutator [A,B]. Construct B from the momentum
operator p̂ and use the fact that an exponential of p̂ is a displacement in position space.

(b) In quantum optics, the displacement operator is defined by Glauber according to

D̂(↵) = exp(↵â
† � ↵

⇤
â) (2.11)

ating function [Eq.(18.12.13) of http://dlmf.nist.gov]

(1� z)
�1

exp

✓
xz

z � 1

◆
=

1X

n=0

Ln(x) z
n
,

using z = �e
�h̄!/kBT and n̄+

1
2 =

1
2 (1� z)/(1 + z).

2It is actually unfair to use the names of Baker, Campbell and Hausdorff for this formula
which goes back to Glauber anyway. The other three formulated an expression that is valid
in the general case that A, B and [A,B] and . . . do not commute.
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where â and â
† are the (dimensionless) annihilation and creation operators. Show

that with a suitable choice of the complex number ↵, this is a special case of D̂(k, s)

defined in (2.9).

2.1.2 Measuring the Wigner function: tomography

The Wigner function for a point particle can be measured by using a tech-
nique called “tomography”. This is familiar from medical imagery where
a three-dimensional distribution is reconstructed from two-dimensional
“shadow images”. The key point is that one needs projections along dif-
ferent “directions” in phase space, mathematically speaking along arbitrary
angles. In the projection theorems, we have see projections onto the posi-
tion and momentum axis. Without going into the details of the tomographic
reconstruction, it may suffice to point out how one may measure relatively
easily projections (or “slices”) of the Wigner function along tilted axes.

The basic idea is to let the particle evolve “freely”, without any external
potential. The technique is sometimes called “time of flight” because in
an experiments, particles are released to expand freely. Since the kinetic
energy is quadratic in momentum, one can show that the time evolution of
the Wigner function is

@tW +
p

m
@xW = 0 (2.12)

This looks very similar to the equations of kinetic theory (Liouville equation
in phase space): in front of the derivative along x, we find the velocity p/m.
This simple form appears because there is no potential (free evolution). If
the kinetic energy had higher-order terms not quadratic in p or if there is a
potential, then derivatives with respect to p and higher derivatives appear
in this equation.

The solution to Eq.(2.12) is simply

W (x, p, t) = W (x� pt/m, p, 0) (2.13)

This translates the simple fact that the momentum distribution is constant
in time (indeed, there is no force). The position distribution is “sheared”
because, as in classical mechanics, particles with a positive velocity move
to the right etc., as sketched in the following picture.
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Now, if we measure the position distribution at time t, we get from the
Wigner function (2.13) and the projection theorem:

⇢(x, t) =
Z

dpW (x� pt/m, p, 0) (2.14)

which is a projection along a “tilted axis” in phase space.

Exercise 6. Write a program that plots the free evolution of the Wigner
function for a superposition of two spatially separated wave packets.

2.1.3 Coherent state as reference states

We now switch to quantum optics and use the notation used there, in par-
ticular the dimensionless position and momentum operators that are built
from the annihilation and creation operators

x =
a + a

†
p

2
, p =

a� a
†

p
2i

(2.15)

(No guarantee for the 1/
p

2, different conventions exist.)
A key concept that we are going to use are the coherent (or Glauber)

states, that we describe in detail in Sec.2.4.3. The basic properties of co-
herent states are the following.

Coherent states are “best suited” to represent classical fields, i.e., with
a nonzero expectation value of the electric field (the position or momen-
tum operators). This can be achieved by constructing an eigenstate of the
annihilation operator:

a|↵i = ↵|↵i (2.16)

The eigenvalue ↵ is complex because is not a hermitean operator.
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The expansion of a coherent state in terms of stationary states (with a
fixed photon number n) is

|↵i = e�|↵|2/2
1X

n=0

↵
n

p
n!
|ni (2.17)

This can be shown by working out the expansion of the eigenvalue
Eq.(2.16) in the number state basis and solving a recurrence relation.

In the position representation, the formula (2.99) is not convenient at
all (sum over Hermite polynomials), but the defining Eq.(2.16) becomes a
relatively simple differential equation (we set ↵ = ( x0 + i k)/

p
2)

(öx + iöp)|↵i = ( x0 + i k)|↵i
(x + @x) ↵(x) = ( x0 + i k) ↵(x) (2.18)

It can be checked that the solution is a Gaussian wavepacket centred at
x = x0 and with average momentum k

 ↵(x) = N exp[�1
2 (x� x0)2 + i kx] (2.19)

Note that the coordinates x, p used here are dimensionless, different from
the section on the Wigner function.

The coherent states are “over complete” which can be checked from the
overlap

h↵|�i = ei�(↵,�) exp(�1
2 |↵� �|2) (2.20)

where the phase �(↵, �) is worked out in the exercises. This equation
means that coherent states are not orthogonal (this would apply for the
eigenstates of a hermitean operator). One can also show the relation

Z
d2
↵ |↵ih↵| = ⇡ 1 (2.21)

where the integral d2
↵ = d(Re ↵) d(Im ↵) is taken over the real and imag-

inary parts of ↵. The factor ⇡, larger than 1, illustrates that this is not a
“completeness relation”, but that there are “too many” of coherent states.

2.1.4 The Q-function

A phase-space distribution that is related to the overlap with a Gaussian
wave packet (a coherent state) is the Husimi or Q-function defined by

Q(↵) =
1
⇡
h↵|ö⇢|↵i (2.22)
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where ↵ is the complex parameter of a coherent state. The prefactor 1/⇡
ensures the normalisation: the integral of Q(↵) over the entire ↵-plane is
equal to the trace of ö⇢, hence unity [see Eq.(2.21)]. Each density operator
ö⇢ defines a Q-function and more generally, the Q-function just provides an
alternative characterization of the quantum state.

The Q-function has the following nice properties.
It is positive Q(↵) � 0 for all ↵ and any density operator ö⇢. This directly

follows from ö⇢ being a density operator and the coherent state |↵i being a
normalizable Hilbert space vector.

For a pure coherent state, ö⇢ = |�ih�|, the Q-function is a Gaussian cen-
tered at ↵ = � and a spread of order unity, see Eq.(2.20).

Exercise. For a thermal state, QT (↵) is a Gaussian centered at ↵ = 0 with
a width of order [höniT + 1]1/2.

How would the Q-function look for a number state? A first guess is
a ‘ring’, since the photon number (or energy) is fixed and shows no fluc-
tuations. This is not far from the precise answer that we have already
calculated:

Qn(↵) =
1
⇡
|h↵|ni|2 = e�|↵|2 |↵|2n

⇡ n!
(2.23)

where now the Poisson distribution has to be read as a function of ↵. It is
manifestly isotropic, increases like a power law |↵|2n near the origin and
decays in a Gaussian manner for large ↵. The maximum indeed occurs
for |↵|2 ⇡ n. The rim of this ‘volcano distribution’ becomes narrower and
narrower as n increases.

2.1.5 The P-function

This function, also called Glauber-Sudarshan distribution, provides an ex-
pansion of the density operator in the basis of coherent states. There are
two variants: the (‘simple’) P-function (Sudarshan, 1963)

ö⇢ =
Z

d2
↵P (↵)|↵ih↵| (2.24)

(the integration measure is again d2
↵ = d(Re ↵) d(Im ↵)) and the ‘positive

P-function’ (Glauber, 1963)

ö⇢ =
Z

d2
↵ d2

� P (↵, �⇤)|↵ih�| (2.25)
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Figure 2.3: Q-functions for selected states of the radiation field.

It is actually surprising that many density operators (indeed, there are some
exceptions) can be represented as a sum of projectors |↵ih↵| on coherent
states. This is related to the coherent states being not orthogonal. The price
to pay is also that the P-function P (↵) can be a quite singular distribution,
containing �-functions and derivatives of �-functions. The positive-P repre-
sentation on the contrary always exists as a regular function P (↵, �⇤).

Formula by Mehta that gives P-function from density operator (taken from Lee 1991):

P (↵) = e
|↵|2

Z
d
2
�

⇡
e
↵�⇤�↵⇤�h��|⇢|�ie|�|

2

(2.26)

where the integral may not exist. This can be used to compute the Wigner function of
a number state in terms of Laguerre polynomials.

Example: for a coherent state,

ö⇢ = |�ih�| : P�(↵) = �(↵� �) (2.27)

where the �-function is defined with respect to the integration measure:
�(↵) = �(Re↵) �(Im ↵).

It is easy to see, by taking the expectation value of Eq.(2.24) in a co-
herent state, that the Q-function is a Gaussian convolution (Faltung) of the
P-function:

Q(↵) =
Z d2

�

⇡
P (�) exp(�|↵� �|2) (2.28)
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This explains why the Q-function behaves always ‘less singularly’ than the
P-function.

2.1.6 Non-classical states

In the 1970s and 1980s, many people in the quantum optics community
tried to define precisely what distinguishes the states of the quantum theory
of radiation from classical optics. Long tradition in this area: Arbeitsgruppe
Nichtklassische Strahlung led by Harry Paul at HU Berlin.

The coherent states had been introduced to have a “classical refer-
ence” – minimum uncertainty wave packets that allow for nonzero expec-
tation values of position and momentum, while respecting the constraints
of quantum mechanics (non-commuting operators). The Wigner function
and the P-function provided two examples of more refined information:
one could even compute a number telling how much a state could not be
interpreted as a classical distribution.

In classical statistical mechanics, as you remember, the “state” of a sys-
tem can be given as a probability distribution over phase space: each point
(x, p) gives the (precisely known) phase-space coordinates of a particle,
and the function f (x, p) gives the number of particles near this point. (This
description can be used for one particle or for an ensemble, e.g., for a gas.)

Singular P-function

One criterion for “non-classical light” took this idea to the P function (Su-
darshan, 1963): if the P-function P (↵) is a regular positive function, then it
describes a classical state of the radiation field. Indeed, in that case, the den-
sity operator ⇢ can be understood as a “classical mixture” of projector onto
coherent states, simply using Eq.(2.24) and the fact that coherent states
are “classical”.

Conversely, if a P-function turns out to have singularities “more singular
than a �-function”, then the state is non-classical. Try to compute the P-
function for a number state from Eq.(2.26): you will get a higher-order
derivative of a �-function �(↵). Hence any number state with n > 0 is
non-classical. But there are also other examples like squeezed states (see
Sec.2.4.4).
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Negative Wigner function

An alternative (and in fact, different) criterion is based on the regions
in phase space where the Wigner function is negative. For example, the
“size” of these regions has been taken as a quantitative measure of “non-
classicality”. Related to this idea is the formula [Eq.(1) from Kenfack and
Życzkowski (2004)]

Z
dxdp {|W |�W} =

Z
dxdp |W |� 1 (2.29)

This yields zero for a Wigner function which is positive everywhere. The
only examples that we have found so far of such Wigner functions are the
ground state of the harmonic oscillator and the coherent states that have
positive Wigner functions. In the cited paper, explicit numbers are com-
puted for non-classical states like superpositions of wave packets, number
states and squeezed number states.

The criterion (2.29) does not change when the Wigner function is dis-
placed en bloc, as it happens when a displacement operator is applied to the
quantum state (see exercise above). It also does not change when the state
is “squeezed” – the Wigner then undergoes a shearing transformation (per-
haps combined with a rotation), but does not change its values. (We shall
see that this example demonstrates the difference in the “Wigner measure”
of “non-classicality” compared to the singularity of the P-function.) The
same is true for the time evolution in a harmonic potential because the
Wigner function is rotated en bloc. This can be seen from the equation of
motion

@tW � p

m
@xW + m!

2
x@pW = 0 (2.30)

where ! is the oscillator frequency.

Exercise. Derive equation (2.30) from the Schrödinger equation in the
position representation.

In the “natural units” used in quantum optics, this equation becomes

@tW = !

h
p@x � x@p

i
W (2.31)

where x and p are dimensionless coordinates for an oscillator with fre-
quency !. By using polar coordinates in phase space, x = r cos' and
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p = r sin', one can show that the differential operator in square brackets
is just �@/@', hence it simply generates a rotation of the Wigner function.
Again, this does not change the size of the negative regions so that the
non-classicality defined by Kenfack and Życzkowski remains invariant for
the free evolution of a field mode. (Conclusion: to make a state “more
non-classical”, one needs a potential higher than quadratic.)

2.1.7 Wigner function in quantum optics

In this section, we introduce the version of the Wigner function that is
used in quantum optics: we shall work with the “natural dimensionless
coordinates” x and p. They are related to the complex parameter of the
coherent state according to ↵ = ( x+i p)/

p
2 [see Eq.(2.18)]. It is convenient

to re-scale the Wigner function when written in the complex variable ↵

because of the integration measure d2
↵ = dxdp/2 and the normalisation

integral:

1 =
Z

dxdpW (x, p) =
Z

d2
↵W (↵) , W (↵) = 2W (x, p) (2.32)

For the coherent state |�i, we thus get from a previous exercise

W (↵) =
e�2|↵��|2

⇡/2
(2.33)

If we compare to the P-function which is �(2)(↵��) for a coherent state and
to the Q-function [Eqs.(2.20, 2.22)], we observe that their characteristic
widths scale like 0 : 1/2 : 1 for the P-, Wigner, and Q-function. In terms
of (de)convolutions, the Wigner function is thus ‘mid-way’ between the P-
and Q-functions.

Example. Thermal state

WT (↵) =
1

⇡(øn + 1
2 )

exp

 

� |↵|2
øn + 1

2

!

(2.34)

This is also an example where the width of the distribution, namely øn + 1
2

changes, here it increases continuously with the temperature.
The different choices of phase space functions are related to the order-

ing of the operators a and a
†. This can be seen from the construction of
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Eq.(2.8) for the Wigner function. We introduced the expectation value of a
displacement operator

�W (z) = h öD(z)i (2.35)

and then Fourier-transformed it to construct the Wigner function. If we
expand h öD(z)i in powers of z and z

⇤, then we get symmetrically ordered
products of a and a

† – simply because the complex numbers z and z
⇤ com-

mute. In the second order, for example:

�W (z) = 1+ zha†i�z
⇤hai+ z

2

2
ha†2i+ z

⇤2

2
ha2i� zz

⇤

2
ha†a+ aa

†i+ O(z3) (2.36)

In classical statistics, such a power series is called a “moment generating
function”: an average like ha2i is called a second moment – and can be
read off from the coefficient of the term z

⇤2. For a coherent state, �W (z)
is a Gaussian: its Taylor expansion in powers of z and z

⇤ then provides all
symmetrically ordered moments.

The moment generating function we have constructed here contains
only symmetric operator products. This implies that with the Wigner func-
tion, we can compute the average of such products by a simple replacement
rule. Consider for example

1
2haa

† + a
†
ai =

Z
d2
↵
↵↵

⇤ + ↵
⇤
↵

2
W (↵) =

Z
d2
↵ |↵|2W (↵) (2.37)

Under the integral, we replace the operators a and a
† by the complex num-

bers ↵ and ↵
⇤, and then perform the integral. For the vacuum state, the

variance 1
2haa

† + a
†
ai is not zero because the Wigner function has a finite

width around ↵ = 0 (a disk of “vacuum fluctuations”). The same formula
does not apply for the P-function, because the integral on the right would
give zero in the vacuum state: P (↵) is a �-peak centered at zero (“no fluc-
tuations”). We shall see in Eq.(??) how the prescription has to be modified
for the P-function.

As a second example, any moments of a quadrature can be computed
‘in the easy way’ with the Wigner function

hXni =
Z

d2
↵

(↵ + ↵
⇤)n

2n/2
W (↵) (2.38)

because in the expansion of the operator power Xn, a symmetric sum over
products of the a and a

† operators appears. In this way, one can also
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compute the full distribution function P (X✓ = q) of any quadrature X✓

which is an experimentally measurable quantity (using homodyne detec-
tion, Sec. 2.5.2). The full Wigner function can be reconstructed by combin-
ing distribution functions for quadratures of several angles. This method is
called “quantum state tomography” and provides the quantum optics ver-
sion of the time-of-flight technique mentioned around Eq.(2.13).

W. Vogel (2000) from Rostock University has shown that whenever this
technique gives a distribution function for quadratures that is “narrower”
than the vacuum states, we are dealing with a non-classical state. This
protocol has been put to used in an experiment by Parigi, Zavatta, and
Bellini (2006) where non-classical states have been generated by adding
exactly one photon to a thermal equilibrium state.

2.1.8 Characteristic functions

The moment generating function for the Wigner function �W (z) can be
generalized to compute operator averages taken in a different order. For
the P-function, for example, one defines

�(z) = heza†e�z
⇤
ai (2.39)

where the first exponential only generates powers of a†. The Taylor expan-
sion in z and z

⇤ preserves here the ordering of the operators: a† to the left,
a to the right. In the vacuum state, we thus get �(z) = 1 . (Exercise. And
for a coherent state |�i?)

Taking the Fourier transform, we get the P-function

P (↵) =
Z d2

z

⇡2
e↵z

⇤�↵
⇤
z
�(z) (2.40)

and we can check this by noting that the quantity ↵z⇤�↵
⇤
z is purely imag-

inary and gives the natural phase factor for the Fourier transform. For the
vacuum state, the integral then yields a two-dimensional �-function, as it
must (since this is a special case of a coherent state).

Non-classical states appear when the Fourier integral (2.40) does not
converge. Already the vacuum state is a marginal case, but even worse
results are obtained for number states, for example. (Exercise. Work out
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�(z) for that case and analyze the behaviour of the integrand in Eq.(2.40))
for large z.

An alternative viewpoint on normal order: we may look at variances
of quadratures with the vacuum-value subtracted. It is easy to check for a
quadrature X

(! X)2 � (! X)2vac = h: (X � hXi)2 :i (2.41)

where the colons : . . . : denote the normal order of the operators. The cor-
respondence between normally ordered products and their averages with
respect to the P-function is expressed by the formula

(! X)2 � (! X)2vac = h: (X � hXi)2 :i =
Z

d2
↵ (x� øx)2P (↵) (2.42)

where x = ( ↵ + ↵
⇤)/

p
2 is the ‘classical version’ of the quadrature operator

[see Eq.(4.49)] and øx = hXi. Note the positive quantity (x � øx)2 under
the integral over the P-function. As long as the P-distribution is regular,
the result will be positive. Conversely, a squeezed state whose variance is
below the vacuum value cannot have a regular P-function. According to this
criterion for ‘being non-classical’, a squeezed state is indeed non-classical.3

Now comes a key insight: if we use the Baker–Campbell–Hausdorff for-
mula, we can re-write the normally ordered operator average (2.39) and
re-group the exponents to get

�(z) = e
1
2 |z|

2heza†�z
⇤
ai = e

1
2 |z|

2
�W (z) (2.43)

We thus find, up to a Gaussian factor, the moment generating function of
the Wigner distribution. Note the “inverted Gaussian” e

1
2 |z|

2 that multiplies
�W (z). This certainly makes the convergence of the Fourier integral more
difficult for the P-function. This factor explains the difference in behaviour
between the P- and the Wigner function.

The construction of Eq.(2.43) was generalized by Cahill to any real
number s between +1 and �1

�s(z) = h öD(z)i e
s
2 |z|

2
(2.44)

s = 1 : P-function
3Note that the reference to the vacuum (ground) state implies that natural units for

the X- and P -quadratures exist. This is why the ‘cheating way of squeezing’ with a simple
re-scaling [see Eq.(2.124)] actually corresponds to a physical transformation.
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s = 0 : Wigner function

s = �1 : Q-function

This is sometimes called ‘s-ordering’. For s = 0 , we get the generating
function of the Wigner function, and for s = �1 . . . the one for the Q-
function which is he�z

⇤
aeza

†i (“anti-normal order”). The functions � and �W

giving the phase-space distributions by a Fourier transformation, we may
apply the convolution theorem. Since � and �W differ by a Gaussian factor,
the Wigner function is the convolution of the P-function with a Gaussian,
namely the Fourier transform of e�

1
2 |z|

2. This gives the formula

W (↵) =
Z d2

�

⇡/2
e�2|↵��|2

P (�) (2.45)

Compare with the corresponding expression (2.28) for the Q- and P-
functions: the only difference is the width of the Gaussian. By playing with
this width, Eq.(2.45) can be generalized to give a phase-space function for
arbitrary s, sometimes called the Cahill–Glauber function P (s;↵).

Now observe that for s < 0, the function �s(z) = e
s
2 |z|

2h öD(z)i decays
more and more rapidly for large z. This means that its Fourier transform
(for example the Q-functions) is “smoother” than the P-function. To adopt
the language of image processing: By multiplying with e

s
2 |z|

2 (for s < 0),
large k-vectors are suppressed. But a picture with few high k-vectors is
blurred, out of focus (unscharf). This is what happens under a Gaussian
convolution. From a mathematical viewpoint, Wigner and Q exist as ordi-
nary functions just because their Fourier transforms converge thanks to the
Gaussian cutoff at large z. For the P-function, this does not happen, and
one must take recourse to the singular functions of distribution theory.

This observation was used by Lee (1991) in order to introduce a mea-
sure “how much non-classical” a state is: this is the largest parameter
�1  s

⇤  +1 such that the back transform of �s⇤(z) still exists (as a
regular, positive distribution, but not more singular than a �-function). If
s
⇤ = 1 , then the P-function is a regular distribution itself, and the state is

“classical” in the P-function sense. If s⇤ = 0 , then the Wigner function is
positive and the state is classical in the Wigner sense.

Example: squeezed states. The squeezed states now provide the fol-
lowing scenario. They are defined as Gaussian minimal uncertainty wave
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packets such that there exist quadratures X and P with ! X < ! P (while
! X! P = 1

2).
For a squeezed state, the Wigner function (s = 0) exists as a positive

distribution. But there is a value s
⇤
> 0 (approaching eventually the P-

function), for which one can find a direction in phase space where the back
transform does no longer exist: This threshold is related to one quadra-
ture having a variance below the vacuum level, ! X

2  1
2 . Lee (1991)

has found that the largest s defined in that way is related to the average
number of thermal photons that one has to ‘mix’ with a non-classical state
(in a beam splitter) in order to produce a ‘classical field’, i.e., to ‘spoil’ the
quantum properties of the non-classical state. To describe such a ‘mixture’,
one takes a kind of convolution of the P-function of the signal mode and
the P-function of a thermal state.

2.2 Gaussian states and Gaussian operations

We now consider a class of states that is ‘closed’ under typical operations
that appear in quantum optics. We provide the discussion in terms of the
Wigner function because of the simple relation (2.44) for its moment gener-
ating function �(z). (Recall that this is also called characteristic function.)

2.2.1 Gaussian states

. . . are those states whose Wigner function is a Gaussian. They are com-
pletely characterised by their average positions in phase space

h↵i =
hX + i P ip

2
(2.46)

and their covariance matrix. To get a compact vectorial notation in phase
space, we set ~q = ( x, p) or use operators Q1 = X and Q2 = P . The covari-
ance matrix (for one mode) is then defined as the symmetrized correlation

Cij =
1
2
hQiQj + QjQii � hQiihQji (2.47)

This is a positive matrix, i.e., for all phase-space vectors ~q

qiCijqj = !( ~q · ~Q)2 := h(~q · ~Q)2i � h~q · ~Qi2 � 0 (2.48)
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Note that the linear combination ~q · ~Q is a (real) quadrature operator if ~q is
suitably normalized.

Examples. Coherent states are Gaussian, squeezed states, too. Thermal
states are also Gaussian, but number states are not.

2.2.2 Gaussian operations

. . . are those manipulations S on a quantum system that maintain the Gaus-
sian character of its state. Most operations in linear optics are Gaussian:

– rotation = free time evolution

– squeezing = nonlinear optics operation with a coherent pump beam (see
page 44)

– thermalize in contact with a bath

– displacements = mix with coherent state at a beam splitter

– ‘mix and trace out’ = mix with another beam at a beam splitter and discard
the other output of the beamsplitter

Gaussian states for multiple modes are defined in a similar way, using mean
values and covariance matrices. When the ‘other beam’ is ‘traced out’, one
keeps only the sub-block of the covariance matrix that is relevant to the
(transmitted signal) beam (= one output of the beamsplitter).

One can show that even a beamsplitter with a ‘vacuum input’ (no
light, just vacuum fluctuations) mixes additional fluctuations into the signal
beam. In this way, the squeezing can be reduced, for example. Conversely,
a coherent state can be squeezed when a ‘squeezed vacuum’ is used at the
other input of the beam splitter (see the Sec.2.5.2 on homodyne detection).

In the following, we focus on unitary Gaussian transformations. They
come with a unitary operator S that transforms a state according to | i 7!
S| i. To apply the transformation on a quadrature, we need to conjugate
it (“sandwich”):

X 7! S
†
XS (2.49)

The Gaussian transformations have the property that the resulting opera-
tors are linear combinations of the original operators X and P . Using the
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index notation:
Qi 7! S

†
QiS =

X

j

MijQj + ↵i (2.50)

with a 2⇥ 2 matrix M and a vector ~↵. Under a unitary transformation, the
new operators satisfy the same commutation relation as before. Writing
X

0 = S
†
XS and similar for P 0, we have

[X 0
, P

0] = [S†
XS, S

†
PS] = S

†[X,P ]S = iøhS†
S = iøh (2.51)

This will have consequences for the matrices M that represent the action of
the transformation S on the canonical observables.

2.2.3 Example: displacement operators

Work with characteristic Wigner function

�(z) = hD(z)i (2.52)

If the state transforms with an operator S, then we have

�(z) 7! hS†
D(z)Si = hexp(zS†

a
†
S � S

†
aSz

⇤)i (2.53)

For a displacement operator S = D(↵), it can be shown that it “displaces”
the canonical operators

S
†
aS = a + ↵ (2.54)

Exercise. Prove this relation by setting ↵ = ↵
0
t and deriving a differential

equation with respect to t.
We then get

�(z) 7! hexp[z(a† + ↵
⇤) � (a + ↵)z⇤)]i = �(z) exp(z↵⇤ � ↵z

⇤) (2.55)

The exponent appearing here is a pure phase that we have seen a few times
before. As for the Wigner function, we use the mapping to classical phase-
space coordinates to provide a more geometric interpretation. Re-name
the real and imaginary parts z = ( x + i y)/

p
2 and introduce the vector

~x = ( x, y). Similarly for ↵ and ~↵. Then,

z↵
⇤ � ↵z

⇤ = i( y↵x � x↵p) (2.56)
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This is a bilinear and antisymmetric form on phase space for which we
introduce the notation

~x ^ ~↵ = x↵p � y↵x (2.57)

This is called the ‘canonical (or symplectic) form’ in analytical mechanics.
It gives the area (with a sign) of the rectangle spanned by the phase-space
vectors ~x and ~↵. It can be computed from the three-dimensional vector
product, and this is the reason for the ‘wedge’ notation ^ which is asso-
ciated to an antisymmetric product (It is used in French texts for the vec-
tor product and in mathematics for the outer product between differential
forms.)

Coming back to the characteristic function �(z) in Eq.(2.55), the dis-
placement operator D(↵) changes it by a phase factor that involves the
symplectic form between the function argument ~x and the displacement ~↵:

displacement: �(~x) 7! �(~x) e�i~x^~↵ (2.58)

We now take the Fourier back transformation to the Wigner function.
The integral to perform is

W (~q) =
Z d2

z

⇡2
eqz

⇤�q
⇤
z
�(z) (2.59)

We can re-write the exponential as a ‘symplectic Fourier phase’ according
to q = ( qx + i qp)/

p
2 and ~q = ( qx, qp)

qz
⇤ � q

⇤
z = i ~x ^ ~q (2.60)

The Fourier integral for the transformed Wigner function becomes

W (~q) 7!
Z d2

x

2⇡2
ei~x^~q�(~x) e�i~x^~↵ (2.61)

which is simply the Wigner function shifted in phase space:

W (~q) 7!
Z d2

x

2⇡2
ei~x^(~q�~↵)

�(~x) = W (~q � ~↵) (2.62)

See how the Wigner function is displaced ‘en bloc’ without changing its
shape. One can in this way define ‘coherent squeezed’ or ‘coherent ther-
mal’ states by starting from nontrivial initial states. In terms of the Wigner
function, the operation is almost trivial, while expansions in number states
etc. generate quite involved algebra.
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2.2.4 Canonical transformations

We now consider a class of transformations S that are called ‘canonical (or
symplectic)’. They are defined by the following properties: (i) the phase
space operators are transformed in a linear way and (ii) this mapping pre-
serves the symplectic form.

(i) The operator on the Hilbert space S is required to generate a linear
map for the quadrature operators:

i = x, p : S
†
QiS =

X

j

MijQj , or S
† ~QS = M ~Q (2.63)

(This corresponds in the notation used before to the special case ~↵ = ~0.)
(ii) The matrix M is such that the area spanned by two phase space

vectors is unchanged (symplectic matrix or transformation)

(M~x) ^ (M~y) = M~x ^ M~y = ~x ^ ~y (2.64)

Often we shall drop the parentheses in the symplectic form. It turns out
that this ensures that the commutator is unchanged when we pass from the
operators ~Q to M ~Q.

Exercise. Consider the operator S = exp(i ✓a†a) and show that its action
on the canonical coordinates X and P corresponds to the Gaussian opera-
tion “rotation” listed above.

What happens to the characteristic function? Observe that the operators
in the exponent can be written as a symplectic form4

�(~x) 7! hS† exp(za† � az
⇤)Si = hS† exp(�i~x ^ ~Q)Si (2.65)

From the preceding properties (i) and (ii), this becomes

hexp(�i~x ^ S
† ~QS)i = hexp(�i~x ^ M ~Q)i = hexp(�iM�1

~x ^ ~Q)i (2.66)

The mapping of the characteristic function is therefore simply a composi-
tion (Hintereinanderausführung):

�(~x) 7! �(M�1
~x) (2.67)

4If the symplectic form is defined for operators as ~A ^ ~B = AxBp � BxAp, where the
operator product is taken in opposite order for the two terms, then one even has ~Q^ ~Q = ih̄

from the commutation relation between X and P .
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with the inverse symplectic transformation.
Now to the Wigner function. The Fourier integral (2.59) is, using the

substitution5
~x = M~x

0

W (~q) 7!
Z d2

x

2⇡2
ei~x^~q�(M�1

~x) =
Z d2

x
0

2⇡2
eiM~x

0^~q
�(~x0) (2.68)

Using the same trick to shift the symplectic matrix onto the other factor in
the wedge product [as in Eq.(2.64)], this becomes (again!)

W (~q) 7!
Z d2

x
0

2⇡2
ei~x

0^M�1
~q
�(~x0) = W (M�1

~q) (2.69)

This expression shows how the phase-space coordinates are first trans-
formed under M�1 and then the (‘old’) Wigner function is evaluated. This
is squeezing or rotating the Wigner function, preserving its ‘footprint’ in
terms of phase-space area. In particular the normalization is preserved:6

1 =
Z

d2
qW (~q) (2.70)

Starting from the vacuum state, one can thus construct a whole set of
Gaussian states. It requires a bit of Lie group analysis to check that any
Gaussian state can be reached.

5Whose Jacobian is 1 because one can show that for symplectic matrices, detM = 1,
since the preserved area is simply the determinant.

6No guarantee that all factors 2⇡2 in the integrals are correct.
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2.3 In quantum optics, how to identify a single
mode

The quantized light field can be in different states. We start here with
a single mode of the field. This may be a oversimplification, but single-
mode fields have become part of the experimental reality with the advent
of high-quality optical cavities. These devices give an electromagnetic field
whose amplitude, in the region between two well-reflecting mirrors, is
much higher at some resonant frequencies. The ‘mode function’ is in this
case not a plane wave, of course, but a standing wave. In the transverse
directions, one often has a Gaussian profile. Around a cavity resonance, it
is a frequent approximation to treat the full field as if it contained only a
single mode. The coupling to other modes may be taken into account as a
loss.

The electric field is given by

E(x, t) = E1"
⇣
a(t) + a

†(t)
⌘

sinkz (2.71)

where z is the coordinate along the cavity axis and k = nz⇡/L. The
factor E1 can be called the ‘electric field per photon’. From a plane-
wave expansion in a quantization volume V , E1 is given by the prefactor
Ek = (øh!k/2"0V )1/2. The corresponding ‘intensity’ is

I1ph = "0cE
2
k

=
øh!kc

2V
. (2.72)

In a cavity, we can take for V the volume ‘filled’ by the mode. For a
transverse mode size of 1 micrometer and a cavity length of 1 cm, we get
I1ph ⇠ 103 mW/cm2 which is not really small. The total power, however,
is quite small: about 10�8 W. Note also that these numbers are based
on very ‘tight’ (diffraction-limited) focussing — beams with larger cross-
section have a smaller ‘field per photon’.

In the Heisenberg picture, the field operator evolves as

E(x, t) = E1"
⇣
ae�i!t + a

† e�i!t
⌘

sinkz (2.73)

A combination of annihilation and creation operators like the one in paren-
theses is called a ‘quadrature’. Quadratures always come in pairs. One
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can find a second quadrature variable by shifting the origin of time by one
quarter period: / �i ae�i!t + i a† ei!t. This corresponds to the magnetic
field [compare expansion of electric and magnetic field operators in QO I].
In analogy to the harmonic oscillator, one often uses the following quadra-
ture variables

X =
a + a

†
p

2
P =

a� a
†

p
2 i

(2.74)

or more generally

X✓ =
ae�i✓ + a

† ei✓p
2

(2.75)

with X0 = X and X⇡/2 = P .
The ground state of the field mode is called the ‘vacuum’ (no photon,

i.e., no excitation present). It is found by looking for the state that is anni-
hilated by the annihilation operator: a|vaci = 0 . Obviously, this is also an
eigenstate of the photon number operator with zero photons: |vaci = |0i.
In the vacuum state, the electric field is also zero on average, of course.

But there are fluctuations around this average, called ‘quantum noise’.
In the vacuum state of the single mode (2.71), e.g., we get

hE(x, t)2i0 = E
2
1 sin2 kz h0|

⇣
a(t) + a

†(t)
⌘ ⇣

a(t) + a
†(t)

⌘
|0i (2.76)

and this combination of operators gives an average

h0|
⇣
a(t) + a

†(t)
⌘ ⇣

a(t) + a
†(t)

⌘
|0i = h0|a(t)a†(t)|0i = 1 (2.77)

The ‘vacuum noise’ in our mode is thus given by the squared single pho-
ton field E

2
1 sin2 kz. Similarly, the other quadrature variable a(t) � a

†(t)
shows a noise strength of unity. This is in accordance with Heisenberg’s
indeterminacy relation, since

h
a(t) + a

†(t), a(t) � a
†(t)

i
= �2. (2.78)

2.4 Gallery of quantum states

We give in this section an overview of different states that have been of
interest in quantum optics. The phase space distribution functions can be
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used to represent these states graphically, see Fig. 2.3 below. In the subsec-
tions, we also give “protocols” how to prepare the states experimentally in
quantum optics.

The following Table 2.1 lists typical states and a few properties. Note
that these states apply to any physical system described by a harmonic
oscillator, this is a larger class than just modes of the electromagnetic field.

name person notation eigenstate of hn̂i preparation

number Fock |ni n̂ = â
†
â n micromaser (difficult!)

thermal Boltzmann ⇢T ? n̄(T ) (BE) contact with thermal bath

coherent Glauber |↵i = D̂(↵)|0i â |↵|2 classical source

squeezed ? |⇠i = Ŝ(⇠)|0i (µa� ⌫a
†
)|⇠i = 0 |⌫|2 non-linear medium,

parametric resonance

Table 2.1: Quantum states of a single mode (annihilation operator a). The
operator D̂(↵) = exp(↵a

† � ↵
⇤
a) is called displacement operator. Similarly,

Ŝ(⇠) = exp(⇠a
†2 � ⇠

⇤
a
2
) for the squeezing operator. Parametrization ⇠ = (r/2)e

i�

with µ = cosh r, ⌫ = e
i�
sinh r. (Check factor 1/2.)

A graphical representation is shown in Fig. 2.4 where the squeezed state
is the ellipse around the origin. These qualitative graphs can be made more
quantitative by calculating the Q-function of the different quantum states
discussed so far (see Sec. 2.1.4).

2.4.1 Number (Fock) states

The simplest quantum states of the single mode field are given by the well-
known stationary states of the harmonic oscillator. These quantum states
are called ‘Fock states’ or ‘number states’ |ni. They are eigenstates of the
‘photon number operator’

ön = a
†
a = aa

† � 1 (2.79)

Since the field energy is proportional to the photon number, the Fock states
are also eigenstates of the field Hamiltonian. Hence they correspond to the
standard stationary states in quantum mechanics.
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number

squeezed

coherent

Figure 2.4: Quantum states of the radiation field, schematically repre-
sented in the phase space plane.

Number states are generated by applying the creation operator to the
ground state (vacuum state) of the mode:

|ni =
1p
n!

(a†)n|0i (2.80)

The expectation value of the annihilation operator is zero in a number
state:

hain = hn|a|ni =
p
nhn|n� 1i = 0 (2.81)

The same is true for the creation operator. It follows that the electric field
average vanishes not only in the vacuum state, but in any Fock state:

hn|E(x, t)|ni = 0 (2.82)

Exercise. Compute the variances of the quadrature operators X✓ in an
arbitrary number state |ni.

The quantum numbers n give an intuitive interpretation to the creation
and annihilation operators: they connect states whose photon numbers
differ by one. In this sense, the ‘creation operator’ a† creates one photon
since for example

h1|a†|0i = 1 . (2.83)
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This matrix element plays an important role when one computed the prob-
ability amplitude that an excited atomic state emits a photon. For stimu-
lated emission, one needs hn+ 1 |a†|ni =

p
n + 1 . Similarly, the ‘annihilator’

a destroys one photon:
h0|a|1i = 1 . (2.84)

This matrix element is needed to compute absorption, and in the general
case, hn� 1|a|ni =

p
n.

• Experimentally, Fock (number) states are the most difficult to prepare.
One has to avoid the loss of photons that makes the photon number uncer-
tain. In addition, the preparation has to target precisely the photon number.
One possible scheme works with a variant of the Jaynes-Cummings-Paul
model: an excited two-level atom interacts with the single-mode cavity
over a precisely tuned interaction time ⌧ such that g

p
n + 1⌧ is a multiple

of 2⇡. As we have seen in QO I, the atom then performs a full Rabi cycle
and ends again in the excited state. If the other conditions are well-chosen,
the state |ni of the cavity can be a stable equilibrium state for this pumped
system. Of course, one has to inject atoms regularly to compensate for the
loss.

2.4.2 Thermal states

This class of field states is more general than the ‘pure’ states described
before. Strictly speaking, they are not “states”, but density operators. The
thermal state is the first example where one has to use both classical and
quantum statistics, and this is achived with the concept of density operator
that combines the two.

Density operators

A density operator is a hermitean operator ö⇢ on the Hilbert space H of the
quantum system under consideration, with the properties

• ⇢ is positive, i.e., h |ö⇢| i � 0 for all  2 H

• ⇢ is a trace class operator, i.e., tr ö⇢ =
P

nhn|ö⇢|ni = 1 where the vectors
|ni form a basis of H.
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It is easy to see the inequality 0  h |ö⇢| i  1 for a normalized state
vector. Physically, this means that this the real number can be interpreted
as a probability: it is the probability to find the system in the state | i when
performing a measurement.

The expectation value of an operator A is now given by the rule

hAi⇢̂ = tr ( Aö⇢) = tr (ö⇢A) (2.85)

where the order under the trace can be changed because of cyclic permu-
tations.

In a sense, thermal quantum states are a natural generalization of clas-
sical thermodynamics to the quantum world. One uses stationary states,
hence the number states we found first, and imposes Boltzmann statistics
to describe the field at thermal equilibrium.

For the single field mode we are discussing here, stationary states are
the number states |ni; they occur with a classical probability proportional
to the Boltzmann factor e�nh̄!/kB T . The density operator is given by

ö⇢ =
1
Z

exp[�øh!ön/kBT ] =
1
Z

1X

n=0

e�nh̄!/kB T |nihn| (2.86)

The normalization factor Z is found by requiring that the trace of this op-
erator be unity:

Z = tr

 1X

n=0

e�nh̄!/kB T |nihn|
!

=
1X

n=0

e�nh̄!/kB T =
1

1� e�h̄!/kB T
, (2.87)

where a geometric series has been summed. You know this sum from classi-
cal thermodynamics as ‘partition function’ (Zustandssumme). The normal-
ized probabilities

pn(T ) = (1 � e�h̄!/kB T )e�nh̄!/kB T (2.88)

are simply the classical probability that the stationary state |ni is realized
in the canonical ensemble.

We note that the terms |nihn| in the sum (2.86) are also density oper-
ators: they are obviously positive and have trace unity. (In fact, the trace
boils down to the norm squared of the state |ni.) The thermal density oper-
ator is thus a probability-weighted, convex sum of density operators.7 This

7One talks about a convex sum if all coefficients are real numbers between zero and
one.
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convex summation is, in general, an allowed linear operation on the space
of density operators.

The density operators |nihn| are special because they are made up of a
single state. These quantum states are called pure. A formal definition:

• A density operator ö⇢ describes a pure state if ö⇢2 = ö⇢.

In mathematics, operators with this property are called projectors. This is
also what is suggested by the Dirac notation | ih |: this operator acts on
the Hilbert space by first projecting onto the state | i and then gives back a
vector proportional to | i, just what happens in geometry for the projection
onto a vector.

A thermal field mode

At optical frequencies and room temperature, the Boltzmann factor
exp(�nøh!/kBT ) has a large negative argument for n � 1 so that the field is
essentially at zero temperature. This is different for microwave radiation,
e.g., or for star atmospheres.

Simple exercise: mean photon number. Let us apply the general
rule (2.85):

höniT = tr(önö⇢T ) =
1
Z

1X

n=0

hn|ön exp(�øh!ön/kBT )|ni (2.89)

The number operators and the Boltzmann ‘operator’ act on their eigenvec-
tors, hence

höniT =
1
Z

1X

n=0

n exp(�øh!n/kBT ) =
1

ēh!/kB T � 1
. (2.90)

Exercise: photon number variance. Result:

(! n)2
T

=
eh̄!/kB T

(eh̄!/kB T � 1)2
=

1
4 sinh2(øh!/2kBT )

. (2.91)

Discuss the limiting cases !/T ! 0 (‘hot’ or ‘classical’ limit) and !/T ! 1
(‘cold’ or ‘quantum’ limit).
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Electric field fluctuations in a single mode at finite temperature:

hE2(x, t)iT = E
2
1 sin2 kz

D
a(t)a†(t) + a

†(t)a(t)
E

T
= E

2
1 sin2 kz (2höniT + 1)

(2.92)
they are enhanced by a factor 2höniT +1 = coth(øh!/2kBT ) compared to zero
temperature.

Three remarks on the advantages of the density operator formalism:

• the traces that are required for expectation values can be taken in any
basis. One can choose a basis adapted to the operator whose average
one its interested in.

• Second, the presence of the density operator ö⇢ under the trace ensures
that the trace exists even if the operator A has ‘large matrix elements’
(like the photon number operator). Well, this is in fact just a restric-
tion on the observables and states that are mathematically allowed.
Thermal states have the advantage that the expectation values exists
for a broad class of observables because the matrix elements of the
density operator become rapidly small for large n.

• The third advantage of using a density operator approach is that it
gives a suitable description of a quantum system whose dynamics is
not completely known and can only be specified by probabilities. In
that case, one formulates an equation of motion for the density matrix
from the solution of which the averages of all interesting quantities
can be calculated.

Preparation of a thermal state with rate equations

As an example of the last remark, we sketch here a ‘preparation scheme’ for
a thermal state. We are going to use ‘rate equations’: differential equations
for the diagonal elements pn(t) = hn|ö⇢(t)|ni:

dpn
dt

= �npn + 
0
npn�1 � 

0(n + 1) pn + (n + 1) pn+1 (2.93)

The constants  and 0 can be interpreted as transition rates between states:
the transition |ni ! |n � 1i happens with the rate n (this rate appears as
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a negative term in úpn and as a positive term in úpn�1). This process can
be interpreted physically as the loss of one of the n photons. This photon
goes into a ‘heat bath’ or ‘environment’ and is absorbed there. Similarly,
the system described by ö⇢ can absorb one photon from the heat bath – this
happens with a ‘Bose stimulation factor’ because for the transition |n�1i !
|ni, the rate is 0n. (To be read off from the second and third terms in
Eq.(2.93).) Even the vacuum state can absorb a photon, hence not n � 1,
but n appears here.

If one waits long enough, the density matrix (more precisely, its diago-
nal elements) relaxes into a steady state given by the equations of ‘detailed
balance’

0 = �np(ss)
n

+ 
0
np

(ss)
n�1 (2.94)

This equation implies that úpn = 0 in Eq.(2.93), but is slightly stronger. (One
can probably show it by induction, starting from n = 0 .) Eq.(3.35) gives a
recurrence relation that links p(ss)

n
to p

(ss)
n�1, whose solution is

p
(ss)
n

⇠
 

0



!
n

=: e�nh̄!/kB T (2.95)

where we can identify the temperature T from the ratio of the rate con-
stants 0/. (One needs 0 < , otherwise no stable equilibrium state is
found.) Of course, this definition of temperature is linked to assigning an
energy nøh! to the state |ni.

Note the similarity of this approach to the photon statistics à la Scully &
Lamb for the laser [QO I]. The difference here is that the dependence of the
rates n and 

0
n in the detailed balance relation (3.35) is in fact simpler

because there is no saturation.

2.4.3 Coherent states

Definition and properties

The coherent state |↵i is an eigenstate of the annihilation operator:

a|↵i = ↵|↵i (2.96)
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Since a is not an hermitean operator, ↵ can be complex. In a coherent state,
the average electric field is nonzero:

hE(x, t)i↵ = E1 sinkz h↵|
⇣
a(t) + a

†(t)
⌘
|↵i = E1 sinkz

⇣
↵ e�i!t + ↵

⇤ ei!t
⌘
.

(2.97)
We have assumed the field in a coherent state of the initial annihilator a.
This expression is the same that we have used in chapter 1 for a classical,
monochromatic field. The magnetic field quadrature also has on average
its classical value in a coherent state. Coherent states are thus very useful
to represent laser fields. We see that ↵ measures the electric field strength
in units of the ‘single photon field’ E1. If we compute the average photon
number in a coherent state, we get

höni↵ = ha|a†a|↵i = |↵|2, (2.98)

so that as an order of magnitude hEi ⇡ E1höni1/2 (note the nonlinear de-
pendence).

Coherent states are not stationary, but rotate in the complex ↵-plane: if
| (0)i = |↵i, then | (t)i = |↵ e�i!ti. This can be shown using the expansion
of a coherent state in terms of number states:

|↵i = e�|↵|2/2
1X

n=0

↵
n

p
n!
|ni (2.99)

Note that number states with arbitrarily high photon numbers are present
in a coherent state. More specifically, we can introduce the probability
pn(↵) of finding n photons in a coherent state:

pn(↵) = |hn|↵i|2 = e�|↵|2 |↵|2n
n!

(2.100)

which is a ‘Poisson distribution’ (the probability distribution of the sum of
independent random bits). Exercise: compute the average photon number
and its fluctuations (variance) in a coherent state:

höni↵ = |↵|2 , (! n)2
↵

= |↵|2 (2.101)

Note the important limiting case where the average photon number be-
comes large |↵| � 1. Then, the relative fluctuation of the photon number
becomes small: ! n/hni ⇠ 1/|↵| ⌧ 1.
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Figure 2.5: Representation of a coherent state in phase space.

The field quadratures also show quantum fluctuations around their clas-
sical average in a coherent state. This is inevitable because of the Heisen-
berg inequality. In the exercises, you are asked to show that these are
equal to the quantum noise in the vacuum state (which is in fact a partic-
ular coherent state with ↵ = 0). This result can be displayed graphically
in the complex ↵-plane by the sketch shown in fig. 2.5. We shall see that
this plot gives the so-called Q-function (or Husimi function) of the state,
see Eq.(2.22) below. This function provides a way to illustrate a quan-
tum state by the analogy to the classical phase space. Note that since
a = ( X + i P )/

p
2, we may identify the ↵-plane with the classical phase

space of a harmonic oscillator. The gray area in this sketch indicates values
for the position and momentum quadratures that are probable outcomes of
measurements. This representation is of course schematic since X and P

cannot be measured simultaneously. We shall give it a precise meaning in
section 2.1 where we show how coherent states can be used to expand any
field state. (There are some subtleties related to the fact that they are not
eigenstates of an hermitean operator.)

Finally, coherent states are not orthogonal. This is again a consequence
of being the eigenstate of a non-hermitean operator. Let us calculate the
overlap

h↵|�i =
X

n

e�|↵|2/2�|�|2/2
1X

n=0

↵
⇤n
�
n

n!

= exp

�1

2

⇣
|↵|2 + |�|2 � ↵

⇤
� � ↵

⇤
� + ↵�

⇤ � ↵�
⇤
⌘�
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= exp

�1

2
|↵� �|2 + i Im ↵

⇤
�

�
(2.102)

Here, we have split the complex overlap into its magnitude (a Gaussian
with maximum at � = ↵) and a phase factor. If we consider the Gaussian
as a function of ↵, we get a peaked function in the phase space plane, with
a typical width (the same in all directions) of the order of 1

2 or 1.
Coherent states can be prepared by feeding the field mode with a “clas-

sical source”. This could be a classical oscillating dipole, as it happens in a
so-called “free electron laser”. Or the field of a intense laser which is often
approximated by a classical field. More details including the calculation of
the time evolution operator for a classical source follow now.

Preparation: displacement operator

How is it possible to generate a coherent state physically? One possible
answer is ‘never’ because to this end, one must be able to control the phase
of the complex number ↵, or equivalently, the origin of time (recall the
discussion before Eq.(2.99)). In practice, however, it is at least useful, if
not necessary, to think ‘as if’ the phase of a light field were controlled,
for example in a laser field. For an instructive discussion, see two papers
by Klaus Mølmer (1997) where he talks about a ‘convenient fiction’. A
physical example where it is plausible that the phase of a light field can be
controlled is the ‘free electron laser’ where a beam of electrons is modulated
in a controlled way (in a ‘wiggler’ element of an accelerator ring). The
accelerated electrons are emitting photons that are injected into a laser
cavity.

This example comes close to the following single-mode Hamiltonian

H = øh!
⇣
a
†
a + 1

2

⌘
+ iøh

⇣
e�i!s t ga

† � ei!s t g
⇤
a

⌘
(2.103)

where the first term is the energy of our mode and the second term de-
scribes

• the coupling of a classical dipole oscillator at frequency !s with the
field mode

• or the coupling of a classical current density j(x, t) with the vector
potential of the mode (via the minimal coupling interaction).
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We are going to see that classical sources generate coherent states.
In the interaction representation, the first term of the Hamilto-

nian (2.103) is transformed away and the exponentials are replaced by
e±i(!�!s )t. If we choose resonant conditions, !s = !, we thus get a
Schrödinger equation with a time-independent Hamiltonian. The solution
is easy (still in the interaction picture)

| ÷ (t)i = exp[t(ga† � g
⇤
a)]| ÷ (0)i = öD(gt)| ÷ (0)i (2.104)

where öD(↵) is the so-called displacement operator

öD(↵) = exp(↵a† � ↵
⇤
a) (2.105)

Let us assume that the mode starts in the vacuum state, we thus find using
the Baker-Campbell-Hausdorff identity8

| (t)i = exp[t(ga† � g
⇤
a)]|0i = e�|g|2t2/2 egt a

†
e�g

⇤
t a|0i (2.106)

Now the annihilation operator gives 0 when acting on the vacuum state, so
that its exponential reduces to unity here. Expanding the exponential with
the creation operator in a power series, we find

| (t)i = e�g
2
t
2
/2

1X

n=0

(gta†)n

n!
|0i = |gti (2.107)

This interaction thus generates a coherent state with amplitude ↵ = gt that
grows linearly in time. To obtain a stationary result, either the ‘oscillator
amplitude’ g can be made time-dependent, or loss processes have to be
added.

We have just shown that coherent states can be obtained by applying a
‘displacement operator’ to the vacuum state:

|↵i = D(↵)|0i D(↵) = exp
n
↵a

† � ↵
⇤
a

o
(2.108)

This unitary operator also displaces the creation and annihilation operators
as follows (to prove by deriving a differential equation in the ‘Heisenberg
picture’, setting ↵ = gt)

D
†(↵) aD(↵) = a + ↵ (2.109)

D
†(↵) a† D(↵) = a

† + ↵
⇤
. (2.110)

8 If the commutator [A,B] commutes with A and B: eA+B
= e

� 1
2 [A,B]

e
A
e
B .
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This identity is useful to show that the field quadrature fluctuations ! X

and ! P in a coherent state are those of the vacuum state.
The displacement operators provide a mapping from the complex num-

bers into unitary operators on the single-mode Hilbert space. Complex
numbers can be added, and operators be applied sequentially. So how do
the two operations compare? The answer lies in the equation

D(↵)D(�) = e i Im(↵�⇤)
D(↵ + �) (2.111)

that can be easily proven with the Baker-Campbell-Hausdorff formula
(footnote 8). If the phase factor were not there, this equation would make
the mapping ↵ 7! öD(↵) a representation (Darstellung) of the additive group
in C in the space of unitary operators U (H) over the (infinite-dimensional)
Hilbert space H of the single mode: either one applies the displacement op-
erators one after the other (left-hand side) or one adds the complex num-
bers and applies a single displacement (right-hand side), one gets the same
result.

Now, there is a phase factor, involving Im(↵�⇤). The mapping ↵ 7! öD(↵)
is then not a (‘proper’) representation, but only a projective representation.
This must be so because the additive group in C is finite-dimensional and
commutative, while the unitary operators D(↵) form a non-commutative
group and are acting on an infinite-dimensional space. And more precisely,
the generators of the two groups do not have the same algebra (a Lie alge-
bra formed by their commutators). For the additive group and its action on
C itself, the generators can be taken as unit vectors parallel to the x and
p axes. The addition of these vectors is, of course, commutative. For the
‘image’ formed by the D(↵), acting on the Hilbert space of state vectors,
the corresponding generators are (expand for small ↵ = x + i p with real
parameters x and p)

D(↵) ⇡ 1 + x(a† � a) + i p(a† + a) (2.112)

so we identify the generators (a† � a)/i and (a† + a) whose commutator
is twice i1. (One likes to choose hermitean generators, this explains the
factors i. The commutator is hermitean after multiplication with i as well.)
This means that the group structure is fundamentally different: the algebra
spanned by the generators does not close, and a proper representation is
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not possible. In fact, the additional phase factor that appears in the formula
for the projective representation can be understood by enlarging the Lie
algebra (and the group) to include also the unit operator.

To conclude, the phase factor appearing in Eq.(2.111) could be argued
to have no physical significance: after all, changing a state vector by a
(‘global’) phase does not change the quantum-mechanical predictions. But
if a superposition can be constructed where the phase appears only in one
term, then the phase becomes observable. A typical example is the ‘geo-
metric Berry phase’. We are not aware whether there is a link between this
concept and the projective phase for the displacement operators.

2.4.4 Squeezed states

You should have got the feeling up to now that the quantized field essen-
tially differs from a classical field by its (‘quantum’) fluctuations. So people
have thought whether it is possible to reduce the quantum noise in a field
quadrature to get something even ‘more classical’ – or having less noise.
This can be achieved in part, to 50%, say. Of course, one cannot beat the
Heisenberg inequality, and the reduced fluctuations in one quadrature have
to be paid by enhanced noise in the other one.

Let us consider the following unitary operator

S(⇠) = exp
⇣
⇠a

†2 � ⇠
⇤
a
2
⌘

(2.113)

Its action on the operators a and a
† is the following linear transformation

(also called Bogoliubov or squeezing transformation)

a 7! S(⇠) aS†(⇠) = µ a� ⌫ a
† (2.114)

a
† 7! S(⇠) a† S†(⇠) = µ a

† � ⌫
⇤
a

where the squeezing parameters are

µ = cosh(2|⇠|), ⌫ = ei� sinh(2|⇠|), � = arg( ⇠) (2.115)

To prove Eq.(2.114), one makes the replacement ⇠ 7! ⇠t and derives a
differential equation with respect to the parameter t. (Mathematically: one
studies the one-parameter family of squeezing operators S(⇠t), a subgroup
in the group of unitary transformations.)
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The squeezed state |⇠i is now defined as the ‘vacuum state’ with respect
to the transformed annihilation operator:

0 = S(⇠) aS†(⇠)|⇠i = ( µ a� ⌫ a
†)|⇠i (2.116)

This equation combined with the assumption that the vacuum state defined
by a|vaci = 0 is unique, gives |vaci = S

†(⇠)|⇠i after fixing a phase reference
and therefore

|⇠i = S(⇠)|vaci (2.117)

because S
† is inverse to the unitary operator S. We thus get the squeezed

state by applying the squeezing operator to the vacuum state.
One can also discuss more general cases, for example a squeezed coherent state
|⇠,↵i = S(⇠)|↵i = S(⇠)D(↵)|vaci. See the book by Vogel & al. (2001) for more
details.

The squeezed state has a mean photon number

h⇠|a†a|⇠i = hvac|S†(⇠)a†aS(⇠)|vaci = · · · = |⌫|2 (2.118)

as can be shown by applying the transformation inverse to Eq.(2.114) (re-
place ⇠ by �⇠).

The photon number distribution reveals more interesting features. Con-
sider first the case of a small squeezing parameter ⇠. The expansion of
Eq.(2.117) yields

|⇠i = ( 1 + ⇠a
†2 � ⇠

⇤
a
2 + . . .)|vaci = |vaci +

p
2⇠|2i + . . . (2.119)

so that in addition to the ordinary vacuum, a state with a photon pair
appears. This is a general feature: the squeezed (vacuum) state |⇠i contains
pairs of photons, |2i, |4i, . . . We shall see below that this can be interpreted
as the result of a nonlinear process where a “pump photon” (of blue color,
say) is “down-converted” into a pair of red photons. The unusual feature
of this “photon pair state” is that the pair appears in a superposition with
the vacuum state, with a relative phase fixed by the complex squeezing
parameter ⇠.

The expansion of the ‘squeezed vacuum’ S(⇠)|0i in the Fock (number state) basis gives
for even photon numbers the amplitudes

c2m =
(2m� 1)!!p

(2m)!
e
im� tanh

m
(2|⇠|)

cosh
1/2

(2|⇠|)
(2.120)
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where � is again the phase of ⇠, and n!! is the product n(n � 2) · · · of all positive
numbers with the same parity up to n.

The mean value of the complex field amplitude is zero in the squeezed
state, as a calculation similar to Eq.(2.118) easily shows: h⇠|a|⇠i = 0 . In
the phase-space plane introduced in Fig. 2.5, the squeezed state |⇠i would
therefore be represented by a “blob” centered at zero.

The “squeezing” becomes apparent if one asks for the quantum fluctu-
ations around the mean value. Let us introduce the general quadrature
operator

X✓ =
ae�i✓ + a

† ei✓p
2

(2.121)

The familiar position and momentum quadratures X, P correspond to
phases ✓ = 0 , ⇡/2. But more generally, two ‘orthogonal’ quadratures are
given by X✓ and X✓+⇡/2. The squeezed state now has fluctuations around
the vacuum state such that one quadrature component has quantum noise
below the Heisenberg limit 1/2. A straightforward calculation gives the fol-
lowing quadrature uncertainty

h⇠|! X
2
✓
|⇠i =

|µ + ⌫ e�2i✓|2
2

(2.122)

If we take 2✓ = � (the phase of the squeezing parameter), we have µ +
⌫ e�2i✓ = cosh(2|⇠|) + sinh(2 |⇠|) = e+2|⇠| which becomes exponentially large
as the magnitude of ⇠ increases. For the orthogonal quadrature, one finds
an exponential reduction of the fluctuations:

! X
2
�/2 =

e+2|⇠|

2
, ! X

2
(�+⇡)/2 =

e�2|⇠|

2
. (2.123)

This is the hallmark of a squeezed state. Note that the uncertainty product
is unchanged: this could have been expected as |⇠i remains a pure state.

Preparation of a squeezed state

How can one prepare a squeezed state? The “cheating way of it” is just a
re-scaling of the position and momentum quadratures:

X
0 = ⌘X, P

0 = ⌘
�1
P (2.124)
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This generates operators X
0 and P

0 that obey the same commutation rela-
tions. However, the energy of the field mode will not be proportional to
a
0†
a
0 ⇠ X

02 + P
02, but involve terms of the form (a0)2 and (a0†)2. So the

“ground state” | i defined by a
0| i = 0 will not be a stationary state of this

Hamiltonian. This example illustrates, however, that (i) squeezed states
evolve in time and are not stationary and (ii) that the quadratic terms (a0)2

and (a0†)2 play a key role.
The second way is to find a way to add these terms to the Hamilto-

nian. This can be done with a nonlinear medium. The ‘squeezing’ opera-
tor (2.113) can be realized with the interaction Hamiltonian

Hint = iøh
⇣
g e�2i!t

a
†2 � g

⇤ e2i!t a2
⌘

(2.125)

with the squeezing parameter given by ⇠ =
R
dt g(t). This interaction occurs

in nonlinear optics. To get a qualitative understanding, imagine a medium
with a field-dependent dielectric constant (‘�(2) nonlinearity’). This is usu-
ally forbidden for symmetry reasons, but it happens in some special cases.
In the electromagnetic energy density, one has

u =
"(|E|)

2
E2 +

1
2µ0

B2 (2.126)

where the linearization

"(|E|) = "0 (1 + n2|E|)2 ⇡ "0 (1 + 2n2|E|)

is often appropriate. In the quantum picture, this gives a contribution to
the Hamiltonian with a term of third order in the field:

H3 = "0n2

Z

V

d3
x |E(x, t)|3 (2.127)

Let us now pick out two spatial modes of the field and put one of it into a
coherent state |↵ e�i!p ti with a ‘large’ amplitude |↵| � 1. The index ‘p’ is
for ‘pump field’. Let us call the other mode (the ‘quantum’ one) the ‘signal’.
The electric field is then

E(x, t) = Epap"p e�i(!p t�kp ·x) + E1"a(t) eik·x + h.c. (2.128)
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The interaction Hamiltonian thus generates cross terms of the form9

Hint = . . . + øh
⇣
g e�i!p t apa

†2 + g
⇤ ei!p t a

†
p
a
2
⌘

(2.129)

øhg = 3"0n2EpE1"p · "⇤
Z

V

d3
x ei(kp�2k)·x (2.130)

One often ignores the quantum fluctuations of the pump mode and re-
places its annihilation operator ap by the coherent state amplitude ↵. The
interaction (2.129) then looks quite like our model Hamiltonian (2.125).

The nonlinear squeezing parameter g↵ is nonzero when the pump and
signal modes are ‘phase matched’, i.e., kp = 2k. For collinear modes, this
is achieved by taking !p = 2!. The spatial integral actually runs only over
the region where the nonlinear index n2 is different from zero. We also see
from (2.129) that one ‘pump photon’ with energy øh!p = 2øh! can ‘decay’
into a pair of signal photons. We already anticipated this behaviour in the
number state expansion (2.119).

We finally get a time-independent Hamiltonian by assuming that the
pump mode is in a coherent state, ap 7! ↵p and by going into a rotating
frame at half the pump frequency, a(t) = e�i!p t/2÷a(t). If one works in ad-
dition at exact resonance, the time evolution operator is U (t) = S(⇠) with
⇠ = g↵pt. In practice, one does not get infinite squeezing as t ! 1 because
of damping.

Two-mode squeezing

What we have seen so far is “one-mode squeezing”. The squeezed state can
be used to create non-classical correlations between two bright beams.

Consider the output a1,2 = ( a ± b)/
p

2 of a balanced beamsplitter with
squeezed vacuum state in mode a. This gives for suitable position and
momentum quadratures the uncertainty product

!( X1 �X2)!( P1 + P2) < 1 (2.131)

because the variance of the difference, !( X1 � X2), is just related to the
squeezed variance ! X < 1/

p
2 of the input mode a. The other variable

P1+ P2 has a variance related to the state of input mode b, it can be brought
9We are actually cheating with the polarization vector ". An accurate desription re-

places n2 by a third-rank tensor that produces a scalar out of three vectors.
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to a minimum uncertainty of order 1 with a coherent state in mode b. The
inequality (2.154) is not inconsistent with the Heisenberg relations because
the sum P1 + P2 and the difference X1 �X2 are commuting operators.

In other words, Eq.(2.154) tells us that the combination “squeezed
vacuum + coherent state” sent onto a beam splitter provides two beams
whose X-quadratures are correlated better than what is allowed by the
standard vacuum fluctuations (or the fluctuations around a coherent =
quasi-classical state). This is the criterion for a non-classical correlation.

Einstein, Podolski, and Rosen (1935) or “EPR” have discussed this ar-
rangement in a slightly different form and came to the conclusion that
quantum mechanics must be an incomplete theory. They mixed up, how-
ever, that the correlations we have here do not require some “instantaneous
action at a distance” between the systems A and B (the two output beams
after the beam splitter). Nonlocal correlations of this kind already appear
in classical physics: hide a red and a blue ball in two boxes, move one box
to the moon and open it. You know immediately the color of the other box,
whereever it is. This correlation cannot be used to transmit information,
however.

Unitary operator that generates two-mode squeezing:

Sab(⇠) = exp( ⇠a†b† � ⇠
⇤
ab) (2.132)

Exercise: check with single-mode squeezer (2.113) and beam splitter trans-
formation (2.146). Appears in many different situations:

• non-degenerate nonlinear media (production of correlated photon
pairs)

• normal modes of a degenerate, weakly interacting Bose gas (Bogoli-
ubov quasi-particles)

• quantum field theory in classical background fields (Klein paradox,
Hawking radiation, Unruh radiation), leading to “unstable vacuum
states”

47



2.5 Quantum optics of the beamsplitter

recall scattering theory
transformation rules for mode operators, for quantum states
split a single photon (generate entanglement)
two-photon interference: Hong–Ou–Mandel experiment
homodyne measurement (local oscillator)
More details on multi-mode quantum fields can be found in Sec. 2.7.

2.5.1 State transformation

A beamsplitter is the most simple way to mix two modes, see Figure 2.6.
From classical electrodynamics, one gets the following amplitudes for the

a

a

t a  + rÕ a1

1

r a  + tÕ a1

2

2

2

Figure 2.6: Mixing of two modes by a beam splitter.
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=

0

@ t r

r
0

t
0

1

A

0

@ a1

a2

1

A
in

. (2.133)

The recipe for quantization is now: ‘replace the classical amplitudes by
annihilation operators’. If the outgoing modes are still to be useful for the
quantum theory, they have to satisfy the commutation relations:

h
ai(out) , a†

j
(out)

i
= �ij. (2.134)

These conditions give constraints on the reflection and transmission am-
plitudes, for example |t0|2 + |r0|2 = 1 . Note that this is not identical
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to energy conservation for the incoming mode a1(in) [that would read
|t|2 + |r0|2 = 1]. But a sufficient condition is that the classical ‘reciprocity
relation’ (Umkehrung des Strahlengangs) holds: t = t

0.
We are now looking for a unitary operator S [the S-matrix] that imple-

ments this beamsplitter transformation in the following sense:

ai(out) = S
†
ai(in)S, i = 1 , 2 (2.135)

From this operator, we can also compute the transformation of the states:
|outi = S|ini. Let us start from the general linear transformation

ai 7! Ai = Mijaj or ~a 7! ~A = M~a (2.136)

where we have introduced matrix and vector notation. For the unitary
transformation, we make the Ansatz (summation over j, k)

S(✓) = exp
⇣
i✓Bjka

†
j
ak

⌘
(2.137)

with Bjk a hermitean matrix (ensuring unitarity). The action of this unitary
on the photon mode operators is now required to reduce to

ai 7! Ai(✓) ⌘ S
†(✓)aiS(✓) != Mijaj. (2.138)

Such an operation is called ‘conjugation with S’. We compute it with a trick
using a differential equation:

d
d✓

Ai(✓) = �iBjkS
†(✓)

h
a
†
j
ak, ai

i
S(✓) (2.139)

= �iBjkS
†(✓) (��ijak) S(✓) (2.140)

= i BikAk(✓). (2.141)

This is a system of linear differential equations with constant coefficients,
so that we get as solution

~A(✓) = exp(i ✓B) ~A(0) = exp(i ✓B) ~a. (2.142)

We thus conclude that the matrix B is fixed by

M = exp(i ✓B) . (2.143)
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If the transformation M is part of a continuous group and depends on ✓ as
a parameter, we can expand it around unity. Doing the same for the matrix
exponential, we get

M ⇡ 1 + i ✓B + . . .

Here, B is called the generator of the set of matrices M = M(✓). The unitary
transformation is thus determined via the same generator B.

For the two-mode beam splitter, an admissible transformation is given
by

M =

0

@ t r

r
0

t
0

1

A =

0

@ cos✓ sin✓
� sin✓ cos✓

1

A . (2.144)

Expanding for small ✓, the generator is

B =

0

@ 0 �i
i 0

1

A = �2 (2.145)

so that the corresponding unitary operator reads

S(✓) = exp
h
i✓(�ia†1a2 + i a†2a1)

i
= exp

h
✓(a†1a2 � a

†
2a1)

i
. (2.146)

Note that indeed, one has the identity

exp (i✓�2) = cos ✓ + i �2 sin✓ =

0

@ cos✓ sin✓
� sin✓ cos✓

1

A (2.147)

Example: splitting a single photon state

What is the state of the two-mode system if one photon is incident in mode
1 on the beam splitter? Initial state |ini = |1, 0i = a

†
1|vaci. The final state is

then, using Eq.(2.146) for small ✓

|outi = S|1, 0i ⇡ |1, 0i + ✓(a†1a2 � a
†
2a1)|1, 0i

= |1, 0i � ✓|0, 1i. (2.148)

For finite ✓, the higher powers also contribute. The calculation gets easy
with the beam splitter transformation of the creation operators.

|outi = Sa
†
1|vaci

(1)
= Sa

†
1S

†|vaci
(2)
=

⇣
a
†
1 cos✓ � a

†
2 sin✓

⌘
|vaci

= cos✓|1, 0i � sin✓|0, 1i (2.149)
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In step (1), we have used that the unitary operator leaves the vacuum state
unchanged. (This is because we have written the exponent in normal or-
der.) In step (2), we have used that S implements the transformation in-
verse to S

† (unitarity). Re-introducing the transmission amplitudes, we
find

|1, 0i 7! t|1, 0i + r|0, 1i (2.150)

so that the probability amplitudes to find the photon in either output mode
correspond exactly, for this incident one-photon state, to the classical trans-
mission and reflection amplitudes.

It is quite complicated to show in the same way the following property
of a ‘bi-coherent state’

S|↵, �i = |↵0
, �

0i,
0

@ ↵
0

�
0

1

A = M

0

@ ↵

�

1

A (2.151)

that remains bi-coherent after the beam splitter. But the proof is quite
simple with the unitary transformation of the mode operators.

Example: splitting a two-photon state (Hong, Ou, Mandel)

Two-photon states do not behave as ‘intuitively’. Let us consider two single-
photon states incident on the same beam splitter as before, |ini = |1, 1i.
Then, by the same trick,

|outi = S|ini = Sa
†
1S

†
Sa

†
2S

†|0, 0i
= ( a†1 cos✓ � a

†
2 sin✓)(a†2 cos✓ + a

†
1 sin✓)|vaci

= ( |2, 0i � |0, 2i) sin 2✓
2

+ |1, 1i cos 2✓ (2.152)

Hence, for a 50/50 beam splitter (cos✓ = sin ✓ or ✓ = 45�), the last term
cancels and the photons are transmitted in ‘bunches’: they come out to-
gether at either output port. There are zero ‘coincidences’ of one photon
in port a

0
1 and the other in a

0
2. This is due to a desctructive interference

between two indistinguishible histories for the two photons from source to
detector – this is called the ‘Hong-Ou-Mandel dip’. The dip in the coinci-
dence signal can be observed by tuning a parameter (like a delay time) that
makes the two photons (in)distinguishable.
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2.5.2 Homodyne detection

Introduce coherent state |�i, simplest model for an intense laser beam.
Discuss output operators a± � after a beam splitter: “mixing” of signal

with “local oscillator” (= laser beam). The quadratures X✓ appear in the
“beating” (interference) when a signal mode a 7! a + � is mixed on a
beam splitter with a large-amplitude coherent state |�i (“local oscillator”,
“reference beam”). The quadrature phase can be chosen from the phase of
�, in other words, the quadratures of a are measured relative to the phase
of the local oscillator. (“Only relative phases are measurable.”)

Picture of quadratures in phase space plane for different states for signal
mode a: vacuum state, number state, coherent state.

2.5.3 Photodetection

(see QO I lecture from WS 2019/20)
square-law detector signal (Glauber, 1960s)

I(t) = höI(t)i = h öE†(t) öE(t)i (2.153)

where the operator öE(t) gives the positive frequency component of the elec-
tric field, evaluated at the detector position and projected onto a polariza-
tion vector that reaches the detector. The positive frequency component of
a free field operator contains all annihilation operators a. These evolve in
time as e�i!! t, this motivates the name “positive frequency”. The conjugate
operator öE†(t) is called the negative frequency component. Sometimes the
notation öE(�)(t) öE(+)(t) for the intensity operator is used.

Key feature: detector signal is nonzero only when photons are present,
not in the vacuum state.

To remember: this is a “slow detector” – the derivation makes use of
time-dependent perturbation theory and to get a sizable signal, one has
to “wait” for many optical periods (to create a free electron, for example).
This is the technical reason why the mixed product of negative/positive fre-
quency operators appears and not the ordinary electric energy density, for
example. Hence: Glauber’s theory does not work for “very fast” detectors
(on the fs scale in the visible).

52



2.6 Entanglement and correlations
(Material not covered in SS 20.)

Entanglement is a property of two observables A and B or of two subsystems described
by A and B. The two subsystems are called entangled when A and B show “non-classical
correlations”, i.e., correlations that cannot be explained by classical statistics.

This formulation is similar to the negative (or singular) values of certain quasi-
probabilities. When these cannot be interpreted as classical probabilities, we encounter
non-classical states. The examples discussed below illustrate for example that squeezing
in one mode can be used to entangle two modes – the “non-classicality” of one input state
is a “resource” that provides “entangling power”.

2.6.1 EPR correlations
Section appears already earlier, in Sec. 2.4.4.

Output a1,2 = (a ± b)/
p
2 of a balanced beamsplitter with squeezed vacuum state in

mode a. This gives for suitable position and momentum uncertainties

�(X1 �X2)�(P1 + P2) < 1 (2.154)

because the variance of the difference, �(X1�X2), is just related to the squeezed variance
�X < 1/

p
2 of the input mode a. The other variable P1 + P2 has a variance related to

the state of input mode b, it can be brought to a minimum uncertainty of order 1 with a
coherent state. The inequality (2.154) is not inconsistent with the Heisenberg relations
because the sum P1 + P2 and the difference X1 �X2 are commuting operators.

In other words, Eq.(2.154) tells us that the combination “squeezed vacuum + co-
herent state” sent onto a beam splitter provides two beams whose X-quadratures are
correlated better than what is allowed by the standard vacuum fluctuations (or the fluctu-
ations around a coherent = quasi-classical state). This is the criterion for a non-classical
correlation.

Einstein, Podolski, and Rosen (1935) or “EPR” have discussed this arrangement in a
slightly different form and came to the conclusion that quantum mechanics must be an
incomplete theory. They mixed up, however, that the correlations we have here do not
require some “instantaneous action at a distance” between the systems A and B (the two
output beams after the beam splitter). Nonlocal correlations of this kind already appear in
classical physics: hide a red and a blue ball in two boxes, move one box to the moon and
open it. You know immediately the color of the other box, whereever it is. This correlation
cannot be used to transmit information, however.
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2.6.2 Bell correlations
The reasoning of EPR has been made more precise by John Bell (2001) who invented a
systematic way of deriving inequalities (upper limits) to correlations between observables
A and B. The “classical” assumption is that these take definite values (those that appear as
outcomes of single measurements), but determined by some other “hidden variables” that
obey classical statistics. If these “hidden variable theories” are formulated in a non-local
way, any quantum correlation can be reproduced. But this would require assumptions that
are not natural from the “local” viewpoint that has become familiar to us from relativity.
An example of a local hidden variable theory provides an upper limit to spin correlations
measured on two two-level systems with spin operators �⌦1 (system A) and 1⌦� (system
B). More precisely, let us take four unit vectors: n, n 0 (for system A) and m , m 0 (for
system b). One assumes that all the observables n ·� have determined (although unknown)
values ±1 corresponding to the possible outcomes of measurements (the eigenvalues ±1).
Then the following inequality holds for a hidden variable theory (Clauser, Horne, Shimony,
and Holt 1969)

|hn · � ⌦ m · �i+ hn 0 · � ⌦ m · �i+ hn 0 · � ⌦ m 0 · �i � hn · � ⌦ m 0 · �i|  2 (2.155)

where the pattern of signs is to be noted. One central idea in the proof is that one can
“locally choose” between n and n 0 (i.e. two different components of the Bloch vector for
system A), and that the outcome for system B is not affected by this choice (this is a “local
theory of hidden variables”).

A classical, perfect correlation can always be achieved between detectors in a fixed
direction, n = m , say. This is within the scope of the CHSH inequality (2.155), however.
Take for example n · � = �3 with eigenstates |ei, |gi and consider the statistical mixture

⇢ =
1

2
(|e, gihe, g|+ |g, eihg, e|) (2.156)

Then perfect anti-correlation holds h�3 ⌦ �3i = tr [(�3 ⌦ �3) ⇢] = �1. This does not pro-
duce any correlations for the Bloch components �1,2, however. Check that one gets for the
CHSH correlation

CHSH = �n3m3 � n
0
3m3 � n

0
3m

0
3 + n3m

0
3

= �(n3 + n
0
3)m3 � (n

0
3 � n3)m

0
3 (2.157)

Let us look for the maximum value of this expression. The components of the unit vectors
are in the range �1 . . .+ 1. For �1  n3 < n

0
3 < 0, both parentheses are negative, and we

get a maximum by choosing m3 = m
0
3 = 1. But then, CHSH = �2n

0
3  2. Along similar

lines, one can prove the inequality (2.155).
The power of this reasoning is that the inequality applies to any choice of state, i.e.,

of choice of “hidden variables” or classical correlations between the outcomes.
Quantum mechanics gives a different answer, however, sometimes. Take the “maxi-

mally entangled state”

| i = 1p
2
(|e, gi � |g, ei) (2.158)
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whose density operator | ih | differs from Eq.(2.156) because of the off-diagonal terms
|e, gihg, e|. In this state, one has the perfect anti-correlation

h |n · � ⌦ n · �| i = �1 (2.159)

in any choice of basis n. (This is related to the “singlet” or zero total spin character of the
state | i.)10 For two different orientations at A and B, one gets the result

h |n · � ⌦ m · �| i = �n · m (2.160)

where n · m is the standard scalar product. The CHSH correlation then becomes

CHSH = �(n + n 0
) · m � (n 0 � n) · m 0 (2.161)

which can be maximized by choosing a suitable “tetrad” of unit vectors11 up to a value
2
p
2. The range of CHSH correlations

2 < |CHSH|  2

p
2 Bell inequality violated (2.162)

is therefore called the “non-classical” domain which cannot be interpreted in terms of a
classical theory (more precisely: a local hidden variable model). The number |CHSH|� 2

can be taken as a quantitative measure of entanglement between system A and B: it
quantifies the degree of “non-classicality” of the correlations between A and B.

2.6.3 Further reading
On entanglement between quadratures or position and momentum variables in general
(so-called “continuous variables”), and in Gaussian states in particular, see Eisert & Plenio
(2003) and Plenio & Virmani (2007). An introduction to the EPR paradox and applica-
tions: Reid & al. (2009).

10The form of the state | i in a different cartesian basis for the spin vectors � is gen-
erated by the three operators �i ⌦ 1 + 1 ⌦ �i) (i,= 1, 2, 3). However, their action on | i
gives zero: hence | i is invariant under rotation (a “singlet state”). Hence the perfect
anticorrelation for the components �3 ⌦ �3 carries over onto any direction.

11Exercise: choose m and m 0 opposite to the directions of n ± n 0, respectively. Then
CHSH =

p
2 + 2 cos ✓ +

p
2� 2 cos ✓ with cos ✓ = n · n 0. This quantity varies between 2

and 2
p
2. The maxima are obtained for cos ✓ = 0, hence orthogonal directions n and n 0.

The directions m and m 0 are then orthogonal as well, and one bisects that angle between
n and n 0.
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2.7 Two modes, many modes
(Material not covered in SS 20.)

2.7.1 Multi-mode Hilbert space and observables
The state space of a two-mode field is the tensor product of the Fock spaces of two har-
monic oscillators. In terms of number states, the basis vectors of this space can be written

|n1;n2i = |n1imode 1 ⌦ |n2imode 2

where the first mode contains n1 and the second mode n2 photons. These states are called
‘product states’. That have expectation values of products of operators pertaining to mode
1 and 2, that factorize, e.g.,

hn̂1n̂2i = hn̂1ihn̂2i.

But due to the possibility of forming superpositions, there is much more ‘space’ in
the multi-mode Hilbert space. For example, it is possible that two modes ‘share’ a single
photon:

1p
2
(|0; 1i+ |1; 0i) (2.163)

This state is called ‘entangled’ if no change of basis for the mode expansion exists such that
the state is mapped onto a product state (this may be very difficult to check in practice).12

The state is by no means unphysical, however, since it is generated by

1p
2
(a

†
1 + a

†
2)|0; 0i (2.164)

where |0; 0i is the two-mode vacuum. Such sums of creation operators occur always in the
mode expansion of the quantized field. The decay of an excited atomic state, for example,
generates a continuous superposition of one-photon states where an infinite number of
modes share a single photon.

Many-mode single-photon states are also generated when an atom is illuminated by a
single photon: the scattering of this photon by the atom generates, as in the classical elec-
tromagnetic theory, a continuous angular distribution of modes with a nonzero amplitude
for one-photon excitations.

Finally, what about the density matrix for a multi-mode field? Let us start with the
simple case of two modes of the same frequency in thermal equilibrium. According to the
general rule, the density matrix is a sum of projectors onto the stationary states |n1;n2i of
the two-mode system, each weighted with a probability proportional to e

��(n1+n2). (Use

12It is simple to see, however, that the expectation value of n̂1n̂2 does not factorize.
Indeed, hn̂1i = 1

2 = hn̂2i while hn̂1n̂2i = 0 since in each component of the state (2.163),
at least one mode has zero photons.
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� = h̄!/kBT .) Since the energy is made additively from single-mode energies, we can
factorize this density operator:

⇢̂ = Z
�1
X

n1,n2

e
��(n1+n2) |n1;n2ihn1;n2|

= Z

X

n1

e
��n1 |n1ihn1|⌦

X

n2

e
��n2 |n2ihn2|

= Z
�1
⇢̃1 ⌦ ⇢̃2 (2.165)

where the ⇢̃1,2 are un-normalized density matrices. The tensor product of the projectors is
defined by coming back to the tensor product of states

|n1ihn1|⌦ |n2ihn2| = (|n1i ⌦ |n2i) (hn1|⌦ hn2|) .

The trace of the two-mode density matrix (2.165) also factorizes because the matrix ele-
ments of a tensor product operator are, by definition, the products of the individual matrix
elements

tr (⇢̂) = Z
�1
X

n1,n2

hn1;n2|⇢̃1 ⌦ ⇢̃2|n1;n2i

= Z
�1
X

n1,n2

hn1|⇢̃1|n1ihn2|⇢̃2|n2i

= Z
�1

(tr ⇢̃1) (tr ⇢̃2) (2.166)

and therefore Z = Z1Z2 = (1� e
��

)
�2.

Since the density matrix of this thermal two-mode state factorizes, this state is not
entangled (averages of products of single-mode operators factorize). This is no longer
true, however, if we allow for an interaction between the modes. Then the energy is
no longer a sum of single-mode energies, and the previous factorization does no longer
work. This is by the way a general rule: interactions between quantum systems lead to
entangled states. For this reason, entangled states are much more frequent in Nature than
are factorized states. It is a nontrivial task, however, to decide whether a given density
matrix describes an entangled state or not.

2.7.2 Digression (Einschub): tensor product states and
operators

It is somewhat tricky to guess the right formulas for multimode field states and operators.
The general rule is the following:

Field operator $ sum of modes
Field state $ product of modes

For example, the electric field operator for a two-mode field is given by

E(x , t) = E1"1a1(t) e
ik1·x + E2"2a2(t) e

ik2·x + h.c.

57



while a typical state is for example the product state |n1;n2i = |n1i ⌦ |n2i. The general
rule gets complicated (1) when we allow for superpositions (sums) of product states and
(2) when we consider measurements that involve products of different mode operators.

In calculations, one often needs products of operators, like E2
(x , t). These are com-

puted in the usual way, one has just to take care that operators sometimes do not com-
mute. But this is only relevant for operators acting on the same mode, [a1, a

†
1] = 1, while

for different modes
[a1, a

†
2] = 0

because they correspond to independent degrees of freedom.

Operator averages in product states. Let us consider the average electric field
for the two-mode case written above. Using the mode expansion, we find terms like hai(t)i
(i = 1, 2) and their adjoints. Now the operator a1| i is evaluated by letting a1 act on the
first factor of a product state:

a1|n1;n2i = (a1|n1i)⌦ |n2i

If | i is a sum of product states (entangled state), then this procedure is done for every
term in this sum. Sometimes this is formalized by writing the operator as a1 ⌦ 1, thus
indicating that for the second mode nothing happens. The action of such operator tensor
products is apparently defined as

A1 ⌦B2|n1;n2i = A1|n1i ⌦B2|n2i (2.167)

by letting each operator factor act on the respective state factor. This notation allows
to avoid the subscripts 1 and 2 as the relevant mode is indicated by the position in the
operator product.

Similarly, the scalar product of tensor products of states is defined by

hn1;n2|m1;m2i = hn1|⌦ hn2|m1i ⌦ |m2i = hn1|m1ihn2|m2i

by taking the scalar product of the corresponding factors.
The average of the electric field for a product of number states is thus zero, as for

a single-mode field, because hn|ani = 0, and this is true for both modes. What about
a product state of two coherent states, | i = |↵;�i? It is simple to see that we get the
classical result (we assume that both modes have the same frequency !)

hE(x , t)i = E1"1↵ e
�i!t+ik1·x + E2"2� e

�i!t+ik2·x + c.c. (2.168)

(Note that ‘c.c.’ and not ‘h.c.’ occurs.) As a general rule, classical fields can be described
by tensor products of coherent states.

Last example where we go quantum: a superposition of coherent product states,

| i = c|↵;�i+ d|�;↵i
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with some complex amplitudes c, d. Then we find

ha1i = |c|2↵+ |d|2�

if h↵|�i = 0. (This is actually never exactly the case, but can be achieved to a very good
precision if |↵ � �| � 1.) This result is an average over the two possible coherent ampli-
tude, weighted with the corresponding probabilities. The average field thus becomes:

hE(x , t)i = E1"1
�
|c|2↵+ |d|2�

�
e
�i!t+ik1·x + E2"2

�
|c|2� + |d|2↵

�
e
�i!t+ik2·x + c.c.

Question: this result does not allow to distinguish this state from an ‘incoherent mixture’
of coherent product states like in (2.168), each state occurring with a probability |c|2, |d|2.
This mixture would be described by the density operator

⇢̂mix = |c|2|↵;�ih↵;�|+ |d|2|�;↵ih�;↵|

and gives the same average electric field (exercise). If the coherent amplitudes ↵, � are
closer together, then due to the nonzero overlap h↵|�i, one can distinguish superposition
and mixture (exercise). Are there observables that can make the difference in the case
h↵|�i = 0?

Average of single-mode operator. Let us calculate as another example the av-
erage photon number in mode 1 for a two-mode field in the entangled state (2.163).
The relevant photon number operator is given by a

†
1a1 or, to be more precise, a†1a1 ⌦ 1.

Its action on the entangled state is worked out using linearity and the operator product
rule (2.167)

1p
2
a
†
1a1 ⌦ 1 (|0; 1i+ |1; 0i)

=
1p
2

⇣
a
†
1a1|0i ⌦ |1i+ a

†
1a1|1i ⌦ |0i

⌘

=
1p
2
|1i ⌦ |0i = 1p

2
|1; 0i

Taking the scalar product with the original state, we find

hn̂1i =
1

2
(h0; 1|+ h1; 0|) |1; 0i = 1

2
.

Once you have done this calculation, you can use the shorter rule: all we need are the
probabilities of having n1 = 0, 1, . . . photons in mode 1. For this, collect all product states
in the state with the same number of photons n1 and compute the squared norm of these
states. From the probabilities for n1 photons, you get the average photon number.

Product operators. As a second example, let us compute the average value of the
product a

†
iaj (i, j = 1, 2) in a thermal two-mode state. This object occurs when you
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measure the two-mode field with a photodetector (see paragraph ?? below). The tensor
product notation is more cumbersome here and gives

a
†
1a1 ⌦ 1 or 1 ⌦ a

†
2a2 or a

†
1 ⌦ a2 or a1 ⌦ a

†
2.

The density matrix is a tensor product of thermal single-mode density matrices. We shall
see that the result is:

ha†iajiT = �ij n̄(T ) (2.169)

where n̄(T ) is the average photon number in a single mode. How does this come about?
When i = j, we are left with the calculation of the average photon number for a single

mode:
ha†iai i =

X

n1,n2

hn1;n2|a†iai ⇢̂1 ⌦ ⇢̂2|n1;n2i

The action of the product density operators factorizes:

⇢̂1 ⌦ ⇢̂2|n1;n2i = ⇢̂1|n1i ⌦ ⇢̂2|n2i

Each single-mode density operator, acting on a number state, gives the corresponding
occupation probability:

⇢̂1|n1i =
X

m1

pm1(T )|m1ihm1|n1i = pn1(T )|n1i,

so that we have, using the result for the photon number of one mode

ha†iai i =

X

n1,n2

pn1(T )pn2(T )hn1;n2|a†iai |n1;n2i

=

X

n1,n2

pn1(T )pn2(T )ni

=

X

ni

pni(T )ni

X

nj

pnj (T )

In the last step, we have noted that the double sum can be factorized (j 6= i is the other
index). The second sum gives unity because the probabilities are normalized, the first
sum gives the average photon number n̄(T ) at temperature T and does no longer depend
on the mode label (this is because we assumed equal frequencies for both modes). This
completes the proof in the case i = j.

A similar calculation shows that the average of a†1a2 vanishes: indeed, we have

hn1;n2|a†1a2|n1;n2i = hn1|a†1|n1ihn2|a2|n2i = 0.
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A. Kenfack & K. Życzkowski (2004). Negativity of the Wigner function as
an indicator of non-classicality, J. Opt. B: Quantum Semiclass. Opt. 6 (10),
396–404.

C. T. Lee (1991). Measure of the nonclassicality of nonclassical states, Phys.
Rev. A 44 (5), R2775–78.

K. Mølmer (1997a). Optical coherence, a convenient fiction, Phys. Rev. A
55, 3195–3203.

K. Mølmer (1997b). Quantum entanglement and classical behaviour, J.
Mod. Opt. 44 (10), 1937–56.

V. Parigi, A. Zavatta & M. Bellini (2006). Generation of nonclassical states
from thermal radiation. in R. E. Meyers, Y. Shih & K. S. Deacon, edi-
tors, Quantum Communications and Quantum Imaging IV, volume 6305
of Proc. of SPIE, page 63050Z.

61



M. B. Plenio & S. Virmani (2007). An introduction to entanglement mea-
sures, Quant. Inf. Comp. 7 (1–2), 1–51.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A.
Bachor, U. L. Andersen & G. Leuchs (2009). Colloquium: The Einstein-
Podolsky-Rosen paradox: From concepts to applications, Rev. Mod. Phys.
81, 1727–51.

E. C. G. Sudarshan (1963). Equivalence of Semiclassical and Quantum
Mechanical Descriptions of Statistical Light Beams, Phys. Rev. Lett. 10
(7), 277–79.

W. Vogel (2000). Nonclassical States: An Observable Criterion, Phys. Rev.
Lett. 84 (9), 1849–52. Comment L. Diósi, Phys. Rev. Lett. 85 (2000)
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