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The preliminary programme for this lecture:

Motivation: experiments in Potsdam and elsewhere

I Interaction between light and atoms (light and matter)

— relevant observables, statistics

— the model of a two-level atom, a two-level medium

— Bloch equations

— quantum states of one qubit

II Photons – field quantization

— elementary scheme with a mode expansion

— states of the radiation field: Fock, coherent, thermal, squeezed;
distribution functions in phase space

— Jaynes-Cummings-Paul model (collapse and revival)

— about spontaneous emission, quantum noise and vacuum energies

Outlook SS 2015: quantum optics II

— master equations, photodetection

— beamsplitter, homodyne detection

— open systems, “system + bath” paradigm

— quantum theory of the laser and the micromaser

— correlations and fluctuations, spectral characterization

— problems of current interest:
two-photon interference, intensity correlations
virtual vs real photons, strong coupling

These notes are a merger of previous years and contain more material than
was actually delivered in WS 2017/18.
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Motivation

List of experiments, some of them performed at University of Potsdam. Try to
answer the question: is this a quantum optics experiment? do we need quantum
optics to understand it?

— A laser pulse is sent on a metallic surface and is (partially) absorbed there
(see Problem 1.1(iv)).

— Small metallic particles are covered with a layer of quantum dots and de-
posited on a substrate. The absorption spectrum shows two peaks.

— When photons are absorbed in a semiconductor, they may create excitons
that diffuse by hopping through the sample. The excitons can dissociate
and generate charge carriers that create a current (solar cell).

— A femto-second short pulse is absorbed in a molecular beam and generates
vibrational wavepackets.

— A polymer film is irradiated with an light pattern and develops a deforma-
tion that can be measured with a scanning microscope.

— A laser beam is exciting an optical cavity where one mirror is mobile: it is
pushed a little due to radiation pressure. By adjusting the frequency of the
laser, the motion of the mirror is cooled down.

— An intense laser is focused into a crystalline material and generates pairs of
photons (also known as biphotons). The polarizations of the biphoton part-
ners is uncertain, but anti-correlated with certainty: when one partner of
the biphoton is polarized horizontally, the other has a vertical polarization
and the other way around.

— When UV light is sent onto a metal, it generates free electrons whose en-
ergy increases linearly with the light frequency (photoelectric effect, pho-
todetector). In theoretical chemistry and surface physics, this effect is mod-
elled with a classical electromagnetic field inserted into the Schrödinger
equation for the metallic electrons.
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Chapter 1

Matter-light interaction

In this chapter, we review some basic physics about polarizable matter and its
interaction with light. The focus is on developing simple approximations that
describe the coupling to near-resonant light fields. The model of a two-level
atom will play an important role.

To begin the lecture, we describe in this chapter the field classically. The
arguments can be made, however, with the quantized field as well. We shall give
here and there a few formulas without going into the details (to be found in
Chapter 2).

01 Nov 16: two-level medium

Two-level approximation: focus on energy levels with Bohr frequencies in the
‘relevant spectrum’ of light. The ‘relevant spectrum’ is defined by application, for
example, by the laser source.

Quantum system with two states |ei, |gi: observables.
Probabilities pa, projectors ⇡̂a = |aiha| (a = e, g). In condensed matter: occu-

pation number densities na(x). See Sec. 1.8 for details.
Dipole moment d, medium polarisation P, current density j.
Matrix elements of dipole: selection rule ha|d|ai = 0. Proof: use definite

parity of wave functions  a(r). Off-diagonal = transition dipole matrix element
he|d|gi.

Electric dipole interaction energy

VAL = �d · E(rA, t) (1.1)
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also called ‘multipolar coupling’. Long-wavelength approximation: electric field
is spatially constant over the spatial extent of the electronic orbitals, evaluate at
‘representative position of the atom’, E(rA, t). See problem sets for numbers.

Current density ‘inside’ the electronic orbital

j(x) =
e

m
Re [ ⇤(x)(p� eA) (x)] (1.2)

Conservation of probability / charge density.
Focus on ‘total current’ = spatial integral

R
d3
r j(r, t), relevant for ‘small atom’

(= described as point dipole). Selection rule: diagonal matrix elements
Z
d3
r 

⇤
e
(r)p e(r) = 0 (1.3)

by same parity argument.
Off-diagonal matrix elements and link to dipole operator

he|(p� eA)|gi = im!Ahe|r|gi (1.4)

with the two-level Bohr frequency h̄!A = Ee � Eg.
See Sec. 1.8: equations of motion for probabilities pa (rate equations) and

their spatial densities. Processes: absorption, stimulated emission, spontaneous
decay.

1.1 08 Nov 16: QM of two-level systems

Two-level Hamiltonian as matrix: Bohr frequency, atom+field Hamiltonian in
dipole approximation (Sec.1.9). Rabi frequency (1.44):

deg · EL(xA, t) = � h̄⌦(t)

2
(1.5)

(‘Paris convention’)
Equations of motion – for state (exercise): time-dependent Schrödinger equa-

tion.

i@tc̃e = �!A � !

2
c̃e +

⌦(t)

2
ei!tc̃g

i@tc̃g = +
!A � !

2
c̃g +

⌦(t)

2
e�i!t

c̃e (1.6)
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in a ‘rotating frame’ at !. Typical choices are ! = !A (‘interaction picture’) or
= !L (‘frame rotating with the laser’).

– for observables: Heisenberg picture. Dipole operator

d̂ = d
⇤
eg� + deg�

† = deg�1 (1.7)

with transition dipole matrix element (often assumed real) and two-level lower-
ing operator. In the Schrödinger picture, � = |gihe|.

Python script with the numerical solution of the Schrödinger equation: see
moodle.

Check that the following Hamiltonian generates the Schrödinger equation
for c̃a [Eq.(1.6)] in the frame rotating at the laser frequency: ! = !L, detuning
� = !L � !A:

H̃ = � h̄�

2
(⇡e � ⇡g)�deg · E(x)| {z }

=+h̄⌦(t)/2

⇣
e+i!Lt�

† + e�i!Lt�

⌘
(1.8)

1.2 15 Nov 16: resonance approximation, pure and
mixed states

Rotating frame and resonance approximation (RWA = rotating wave approxima-
tion, Sec.1.9.3).

Typical questions:
– frequency and time scales (cw vs short pulses)
– envelope approximation (complex Rabi, RWA)
– numerical solutions with/out RWA, comparison
– Rabi oscillations in RWA (analytical: exercise)

Bloch equations: see Eq.(1.13).

1.3 22 Nov 16: dynamics in the Bloch sphere

Bloch vector = 3 real components in ‘abstract space’, represented as point (end-
point of vector) in sphere.

Animations with solution to Bloch equations: see Python script on Moodle.
Pure state = two-level wave function with amplitudes cg, ce. Gives Bloch

vector on the sphere, s2 = s
2

1
+ s

2

2
+ s

2

3
= 1. Geographic names: ‘North pole’ =
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excited state (‘spin up’), ‘South pole’ = ground state (‘spin down’). On ‘equator’
= superpositions with equal weight/occupations pe = pg = 1/2, but definite
relative phase.

Observation: to each point on the Bloch sphere corresponds a ‘ray’ of nor-
malized two-level states that differ by a global phase factor. Since this phase
is (usually) not observable, the Bloch representation is closer to the physical
observables.

Observables: projection onto ‘North-South axis’ is the population difference
s3 = pe � pg. Projection onto equatorial plane gives real and imaginary parts of
dipole expectation value: h�i = (s1 � is2)/2.

Dynamics:
(1) freely evolving two-level system, no laser = rotation (precession) of Bloch

vector around North-South axis. Component s3 is preserved. The rotation fre-
quency is zero (in the rotating frame) if the laser is resonant with the atom. In
the original frame, the precession frequency is the atomic frequency !A (‘very
fast’).

(2) with a laser = rotation around a tilted axis. On resonance, the axis lies
in the equatorial plane and rotates the Bloch vector from the ground state to the
excited state and back. The rotation frequency is then the Rabi frequency. The
projection onto the populations gives the Rabi oscillations.

Mixed states: Bloch vectors with length s < 1. Cannot be represented as state
vectors, only as density matrix

⇢ =
1

2

0

@ 1 + s3 s1 � is2
s1 + is2 1� s3

1

A =
1

2
( + s · �) (1.9)

Eigenvalues are (1±s)/2, have the physical meaning of a probability. Are positive
only when s  1.

(2) spontaneous decay of excited state = compression of Bloch sphere along
the North-South axis and shift downwards so that the ground state is invariant.

(3) dephasing/decoherence of dipole = compression in the equatorial plane
towards the North-South axis (from an ‘orange’ to a ‘lemon’ shape).

Generic dynamics: a combination of all these. Can lead to a spiralling-in
towards a steady state in the lower half of the Bloch sphere. If the laser field is a
continuous wave, the final state is typically close to the surface (close to a pure
state).
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Short laser pulse: a rotation around an axis defined by the complex Rabi
frequency ⌦(t) and the detuning �. Recall full laser field projected onto atomic
transition dipole

deg · EL(t) = � h̄

2

⇣
⌦(t) e�i!Lt + c.c.

⌘
(1.10)

For not-too-short laser pulses, ⌦(t) is a slowly varying envelope on the scale set
by the period 2⇡/!L.

1.4 29 Nov 16: complex Rabi frequency

From resonance approximation:

⌦(t) ei!Lt = �2d

h̄
· EL(t) ⇡ ⌦ (1.11)

where ⌦ is proportional to the complex amplitude of the laser field. The
neglected terms oscillate at 2!L and provide small-amplitude fast oscillations
around the solutions in the resonance approximation. Word from nuclear spin
resonance: “rotating wave approximation” (RWA), is often used.

The complex Rabi frequency ⌦ has a phase that can even vary in time (slow
compared to !L) – this can be used to ‘steer’ the Bloch vector because its change
is equivalent to a rotation of the 12-plane (equatorial plane) of the Bloch sphere.

1.5 06 Dec 16: short-pulse excitation of molecules

Electronic states in molecules have qualitative features that are similar to orbitals
in atoms. Let us take as an example a diatomic molecule. The ground state is
‘round’ like an s-state (left), while an excited state is ‘odd’ and has a plane where
the electronic wave function changes sign (right).
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The right case is still ‘binding’ because there is still ‘enough’ electronic charge
between the two nuclei. (This would be smaller with an orbital whose symmetry
plane is in between the nuclei.)

The laser excitation of the molecule is often visualized in a two-potential
diagram

where the lower/upper curves correspond to the ground/excited states. What
is represented here are the eigenvalues of the Schrödinger equation for the
electrons, at a fixed distance r between the nuclei. In the so-called Born-
Oppenheimer approximation, these eigenvalues can be used as potentials Vg(r)

and Ve(r) for the relative motion of the molecule. At short distance, the Coulomb
repulsion between the nuclei is dominant and the potentials are repulsive. At
large distance, the electron can no longer ‘hop’ between the nuclei, and we get
weak (van der Waals-like) interaction between an atom and an ion. In between
is a minimum where one can read off the equilibrium length of the ‘chemical
bond’ in the molecule (for the ground state). As usual in quantum mechanics,
when we treat the distance r as a dynamical variable, one gets bound states
below the dissociation threshold, and continuum states above. The low-lying
bound states have a characteristic frequency near the minima of the potential
that sets the time scale for the vibrational motion. The period is in the hundred
fs range, depending on the masses in the molecule.

With a short large pulse, one can excite from the ground state in Vg a range
of vibrational states in Ve, depending on the frequency spectrum of the pulse and
the matching (overlap) between the vibrational wave functions. A typical rule is
the ‘Franck-Condon principle’: with a high probability, one excites a vibrational
state whose turning point in Ve is close to the equilibrium position in Vg (vertical
arrows). But with a pulse, one typically excites several states and creates a
wavepacket (superposition) that travels out in Ve and comes back. With a second
pulse, the process can be made to interfere, constructively or not, depending on
the timing, the laser phase etc. One can also use a second laser with a different
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wavelength to excite the molecule to a third excited state – where it dissociates,
for example. This pulse, also via the Franck-Condon principle, is sensitive to
the excited-state amplitude in some spatial range and can probe in this way the
arrival time, amplitude and shape of the wave packet. See lecture ‘Quantum
Dynamics and Wavepackets’ with M. Gühr at U Potsdam (SS 16).

1.6 Spin language

The following sections 1.6–1.10 provide additional material: some has been cov-
ered in WS 16/17, some not.

1.6.1 Bloch vector

Bloch vector: expectation value of Pauli matrices

s(t) = h (t)|�| (t)i (1.12)

Typical states, described by analogy to points on a sphere (spherical coordi-
nates):

• ground state = south pole

• excited state = north pole

• superposition with equal weights (|ei+ei'|gi)/
p
2 = a point on the equator

with longitude '

Translation into macroscopic observables: occupations (s3) and polarization
(s1, s2).

1.6.2 Bloch dynamics

Dissipative dynamics for components of Bloch vector, contains the following pro-
cesses:

Spontaneous decay rate � (time scale called T1 in spin resonance).
Decoherence or dephasing rate � (coherence time T2).
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Set of Bloch equations (assuming that ⌦ is real)

ds1
dt

= �s2 � �s1

ds2
dt

= ��s1 � ⌦s3 � �s2

ds3
dt

= ⌦s2 � �(s3 + 1) (1.13)

in rotating frame at ! = !L, detuning � = !L � !A, Rabi frequency ⌦ ⇠ EL.
Geometric moves:

– rotation (from Hamiltonian, axis defined by detuning � and Rabi frequency ⌦)
– contraction (from decoherence rate � and decay rate �), squeezes sphere into
‘lemon’ with axis in the ‘north-south’ direction
– displacement towards the south pole (ground state), from the decay rate �

Solution to time-dependent Schrödinger equation: Rabi oscillations,
Sec.1.9.4.

Rabi oscillations with nonzero detuning: populations of the two lev-
els, pe(t) and pg(t), vs. time.
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‘Absorption spectrum’ = amplitude of Rabi oscillations in pe(t) vs.
laser frequency. Lorentz = name for the line shape = dependence on
detuning � = !L � !A. � = ‘natural linewidth’ = minimal width of
the spectrum when the Rabi frequency ⌦ becomes small.

Sketch for rotation axis n̂ of the spin vector representing the state of
the atom. Initial states ~g = ground state (‘spin down’), ~e = excited
state (‘spin up’). The angle ✓, proportional to the Rabi frequency,
gives the opening angle of a cone on which the spin vector rotates.
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Rotation axis for a laser field on resonance: the spin vector rotates
‘full circle’ from spin down to spin up and back. Geometric represen-
tation of Rabi oscillations (on resonance, � = 0).

General Hamiltonian is decomposed into unit matrix and Pauli matrices

Ĥ = H0 +
X

j

Hj�j (1.14)

This gives the ‘coherent dynamics’

@s

@t
=

2

h̄
H⇥ s (1.15)

= rotation of the Bloch vector. By analogy to the precession of a spin in a mag-
netic field, one calls the components Hj in Eq.(1.14) the ‘effective magnetic field’.

Rotations preserve the length of a vector: if one starts with a Bloch vector on
the surface of the sphere, it will remain there if the time evolution is coherent
(purely Hamiltonian). The length of the Bloch vector is not preserved by dissi-
pative processes: they push the state into the interior of the Bloch sphere where
‘incoherent states’ occur (see Sec.1.10).

1.6.3 Limit of rate equations

The Bloch equations are a ‘more refined’ description compared to the rate equa-
tions (1.27). By making a suitable approximation, we can recover them, this is
the technique of
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• adiabatic elimination of coherences

We solve the equations for s1 and s2 with the assumption that the coherence
time 1/� is the ‘shortest time scale’. These two components of the Bloch vector
(also known as ‘coherences’) then relax rapidly to their stationary values. Setting
ds1,2/dt = 0, we find for example

s2 ⇡ � �⌦

�2 +�2
s3 (1.16)

This is now inserted into the differential equation for s3, assuming that the pop-
ulation difference s3 evolves ‘slowly enough’ so that the coherence s2 can ‘follow
adiabatically’. This gives the equation

ds3
dt

= ��(s3 + 1)� �
⌦2

�2 +�2
s3 (1.17)

Adding an intelligent zero, (d/dt)(pe + pg) = 0, we get the rate equation for the
excited state probability

dpe
dt

= ��pe � �
⌦2

�2 +�2
(pe � pg) (1.18)

The first term gives the spontaneous decay, the second one gives stimulated
decay (negative) and absorption (positive). By comparing to the rate equa-
tions (1.27), we get the following information

• stimulated decay and absorption both scale with the light intensity, with
the same proportionality factor

• the absorption cross section � can be found by identifying the absorption
rate

�I =
�

2

⌦2

�2 +�2
(1.19)

Note the Lorentzian line shape of the absorption vs. laser frequency. For the pho-
ton flux I (number of photons per time and area), we have from electrodynamics

I =
c"0|EL|2
h̄!L

(1.20)

while the squared Rabi frequency is ⌦2 = 4d2eg|EL|2/h̄2 (assuming a transition
dipole parallel to the field). We get

� =
�2

�2 +�2

2d2eg!L

h̄c"0�
=

�2

�2 +�2

!L

!A
6⇡
✓

c

!L

◆
2

(1.21)
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where we have used the expression for the purely radiative decoherence rate

� =
d
2

eg!
3

A

3⇡"0h̄c3
(1.22)

that Dirac (1927) has first found when he quantized the electromagnetic field.
On resonance, Eq.(1.21) reproduces an absorption cross section given by the
squared wavelength, much larger that the atomic size itself:

resonant absorption cross section : �abs =
3

2⇡
�
2

A (1.23)

1.7 Selection of physical phenomena in light-
matter interaction

The description of atom+light interaction that we have developed so far, com-
plemented by techniques to quantize the field (see following chapter) is the basis
for most of the phenomena that have been studied in the quantum optics of two-
level system. One can discuss the following topics (we give a selection in this
lecture):

• Rabi oscillations in a classical monochromatic field;

• spontaneous decay of an excited atom into the continuum of vacuum field
modes (initially in the ground state);

• interaction of light with a medium of two-level atoms. One has to re-
interpret the density matrix as giving the state of a macroscopic number
of atoms. The occupations pe, pg, for example, then are proportional to
the number of atoms (or molecules) in the excited and ground state. The
atomic dipole becomes, after multiplication with the atom density, the
polarization field (electric dipole moment per volume). Coupled to the
Maxwell equations where this polarization field enters as a source term,
one then has a simple “semiclassical” description for a laser, for a solar cell,
for a semi-conductor. The Bloch equations in this case may contain more
complicated terms.

• collapse and revival of Rabi oscillations when the atom couples to a single
quantized field mode. The collapse and the revival occurs because the
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Rabi frequency depends on the photon number, and the oscillations for
the different Fock state components of a field state (a coherent state, for
example) get out of phase;

• resonance fluorescence is the radiation emitted by an atom driven by a
near-resonant laser field. This combines Rabi oscillations in a classical
field with the emission of photons into the empty mode continuum. Of
particular interest is the spectrum of this emission: it contains, for suf-
ficiently strong driving, two sidebands, split by the Rabi frequency from
the central line (centered at the laser frequency). The central line con-
tains a monochromatic component (‘elastic scattering’, related to the laser-
induced dipole moment as in classical electrodynamics) and a broadened
component of Lorentzian shape, related to spontaneous emission. This
spectrum is a cornerstone of quantum optics and one of the few examples
of a non-perturbative calculation in quantum electrodynamics.

There are also physical effects which cannot be captured by our two-level
description. They are related to the failure of the resonance approximation:

• the Lamb shift, a displacement of certain energy levels in atoms, arises
from a very wide frequency continuum of vacuum field modes. One does
get a wrong result if in the atom+field interaction, non-resonant processes
are neglected.

• for short light pulses (roughly in the 1 fs range), one needs more than two
energy levels, and even continuum states may be necessary for an accurate
description. These pulses can generate ‘high harmonics’ as an electron is
pulled away from the atomic core and pushed back under the influence of
so-called ‘few-cycle pulses’ which can be very intense (electric fields com-
parable to those in the atom itself, Rabi frequencies comparable to atomic
Bohr frequencies).

The following sections give more details on the atom+field coupling and are recom-
mended for further reading. All details have not been covered in depth in WS 16/17.
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1.8 Relevant observables

matter responds with
– absorption of light
– electric dipole moments, i.e. a polarization field P(!, r)

. . . two different processes. A minimal description that contains the two is a
two-level model.

1.8.1 Reminder on energy levels, occupations

Energy level scheme to model absorption: from quantum mechanics. Suppose
that constituent atoms (molecules, . . . ) are in either state |gi or |ei. In a semi-
conductor, electronic bands (valence band, separated by an energy gap from the
conduction band).

In a single atom, quantum mechanics provides probabilities pg and pe: if | i
is the state of the system, then

pa = |ha| i|2, a = g, e (1.24)

In a macroscopic piece of matter where n(r) is the number density of atoms, we
have level densities

na(r, t) = n(r)pa(t; r) (1.25)

where the probability pa depends on r because it involves the local light fields,
as we shall see in a moment.1

The total probability is conserved

pg + pe = 1 (1.26)

and similarly the sum over the densities na(r, t). If this would not hold true, then
a Hilbert space with only two states is ‘too small’.

1.8.2 ‘Incoherent’ dynamics: rate equations

The word ‘incoherent’ means here: a description with only populations pa is
sufficient. Is often the case in condensed matter. Also for atoms in the gas phase

1Distinction between ‘local’ and ‘macroscopic’ field. Not a well-defined question, actually.
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as long as the time scales are ‘long enough’. Rate equations for absorption of
light

dpe
dt

= �I(r)pg � �pe

dpg
dt

= ��I(r)pg + �pe (1.27)

where I(r) is the ‘photon intensity’ (flux of photons per second, related to stan-
dard intensity by factor h̄!L) and � the absorption cross section. The time 1/� is
the lifetime of the excited state.

Simple exercise: stationary solution. pe/pg = �I/�. Typical numbers: 1/� ⇠
10 ns, � ⇠ 10�16 cm2, I hf = 1mW/cm2 give pe/pg ⇠ 10�9. Can be much larger
on resonance and with higher laser power.

Exercise: think about link between absorption cross section, absorption and
complex refractive index of a medium. Check typical numbers.

1.8.3 Rate equations in a medium

Basic quantities are now spatial number densities na(x, t) (a = e, g) for
atoms/molecules in the ‘internal states’ e or g. A typical model looks like

@tne = ��ne + �I(ng � ne) +r ·Drne (1.28)

@tng = +�ne + �I(ne � ng) +r ·Drng (1.29)

The notation is as in Eqs.(1.27). In the first equation, we have two additional
terms:

• stimulated emission described by the term with ��Ine: in the presence of
photons, the quantum jump to the ground state happens more frequently.
This is the key process for the working of a laser because it increases the
photon number.

• spatial diffusion described by the second derivatives proportional to Dr2:
this is a typical ‘macroscopic’ consequence of collisions between particles
(in a gas) or with the ‘background medium’ (in a solid medium). Diffusion
involves the Fick-Fourier law for the current density

ja = �Drna (1.30)
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In words: if there is a concentration gradient, diffusion tries to flatten it out
by moving particles in the direction of less concentration. The diffusion
coefficient D (units: m2

/s) gives the mean square displacement per unit
time, as in the simple model of a random walker (Brownian motion).

The total number of molecules (spatial integral of ne + ng) is conserved, up to
boundary terms. At the boundary of the system, one may impose, for example,
that particles in a given states are ‘pumped’ into it.

Remarks

• With these rate equations, one may describe for example the dynamics of
charge carriers (electrons and holes) generated in a solar cell. A few additional
terms are needed to describe their generation by absorption of light, the electric
field that drives them to the boundaries of the cell, and the recombination of
electrons and holes.2

• A simplified laser model also works with rate equations. One needs, of
course, an additional equation of motion for the photon intensity

@tI = . . . (Maxwell) (1.31)

that will be based on the Maxwell equations to describe photon propagation in
space.

• Such a set of rate equations for a laser gives a nonlinear system because of
the processes of absorption and stimulated emission that involves the products
Ina. In the field of ‘nonlinear dynamics’, a simplified version has become known
as the Lorenz model; it is a well-known example of chaotic behaviour.

Reminder on polarization

Meaning of polarization used here3: spatial density of electric dipole moments (a vector
field). This is a ‘micro-macro relation’ typical for electrodynamics

P(!, r) = nat(r)d(!) (1.32)

2A recent example is the paper by Gélinas & al. (2014) where a spatial separation of electrons
and holes was observed that was even faster than expected from the diffusion model above.

3Other meaning for polarization: orientation of the electric field vector in an electromagnetic
wave. Linear, circular, elliptic polarization. Unpolarized, partially polarized light.
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where nat(r) is the spatial density of constituent ‘atoms’ (or molecules) and d(!) the
dipole moment per atom. (Electrons are displaced relative to positive atomic cores,
overall charge remains zero.)

Link to refractive index n(!, r): the polarization field is the ‘linear response’ to the
electric field. The linear coefficient involves the index:

P(!, r) = "0(n
2 � 1)E(!, r) (1.33)

At the microscopic level: the linear response coefficient is called the polarizability ↵(!)
= response of dipole moment to an electric field

d(!) = ↵(!)E(!, r) (1.34)

where r is now the position of the atom in the field. In suitable units: ↵(!)/"0 has the
units of volume, typically comparable to the volume occupied by electrons in an atom.

1.9 Quantum mechanics of two-level system

We come back to a single two-level atom and start with a quantum mechanics
description. The general state is a superposition

| (t)i =
X

a

ca(t)|ai = ce(t)|ei+ cg(t)|gi (1.35)

which contains more information that just the probabilities pa = |ca|2. We shall
see that the phases of the complex numbers ce, cg are related to the polarization
or the dipole moment of the atom.

1.9.1 Atom Hamiltonian

An operator, not consistently written with a hat

Ĥ = HA +HAL (1.36)

‘Free atom Hamiltonian’ for a system with just two energy levels (states |ei and
|gi)

Ha = Ee|eihe|+ Eg|gihg| (1.37)

Atom+light interaction Hamiltonian: copied by correspondence principle from
electrodynamics = energy of electric dipole in a field

HAL = �d̂ · EL(xA, t) (1.38)
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The ‘dipole approximation’ is made here: the electric field is evaluated at the
position xA of the ‘atom as a whole’, neglecting its variation across the size of
the electron orbitals. In this chapter, we shall treat the electric field as a classical
(time-dependent) field and not as an operator. This is called the ‘semiclassical
model’.

The dipole can be written as the following operator

d̂ = deg

⇣
|eihg|+ |gihe|

⌘
(1.39)

Its matrix elements between the two states can be arranged in a 2⇥ 2 matrix
0

@ he|d̂|ei he|d̂|gi
hg|d̂|ei hg|d̂|gi

1

A =

0

@ 0 deg

deg 0

1

A (1.40)

Since this must be a hermitean matrix, we have assumed here that the dipole
matrix elements are real: dge = d

⇤
eg = deg. This can be done very often, for

example when time-reversal holds. For other choices of the states e, g, however,
deg remains complex and one has to adapt Eq.(1.39) accordingly.

We have assumed here that the states |ei and |gi have no ‘average dipole mo-
ment’ which is the quantum mechanical word for the diagonal matrix elements
being zero. This is the result of a so-called ‘selection rule’ that applies as long
as the two states have a well-defined parity (symmetry under spatial inversion
of the electron coordinates). Conversely, the transition dipole moment deg is
nonzero only when |ei and |gi have opposite parity, for example between an s-
ground state (angular momentum l = 0) and a p-excited state (l = 1). More
details on this can be found in Sec.1.11.2.

Eq.(1.40) is a vector-valued matrix, this happens quite often in quantum field theory. Recall
vector � of Pauli matrices. These matrices can also be used to re-write the atom Hamiltonian.
The matrix representation is based on the identification of the basis vector |ei $ (1, 0)T (my
personal convention) and takes the form

H =
Ee + Eg

2
+

Ee � Eg

2
�3 � deg ·EL(t)�1

where the term with the unit matrix is often suppressed by a suitable choice of the zero of
energy.

Finally, if the atom is illuminated by laser light, we may assume that the
electric field is monochromatic with an amplitude and a frequency !L. One
often-used convention is to write

EL(x, t) = EL(x) e
�i!Lt + c.c. (1.41)
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where ‘c.c.’ means ‘complex conjugate’. Other conventions use the real part of
the first term, but then the amplitude differs by a numerical factor. One has
to check carefully which convention is used. An alternative convention is also
using the ‘other’ sign in the exponential, e+i!Lt, often used in optics and electrical
engineering. (Sometimes, it may help to write j = �i and avoid the confusion.)

1.9.2 Schrödinger equation

We want to work out the dynamics of the two-level system. The time-dependent
amplitudes ca(t) in Eq.(1.35) can be found by taking the time derivative and
using the Schrödinger equation:

ih̄ca(t) = ha|H| (t)i (1.42)

To work this out, we introduce the notation

Ee + Eg = 0

Ee � Eg = h̄!A (1.43)

�deg · EL(xA, t) =
h̄⌦(t)

2
(1.44)

Eq.(1.85) is the formula of Bohr for the spectral line associated with the two
energy levels. Eq.(1.44) defines the ‘Rabi frequency’ (in the Paris convention),
which is proportional to the electric field of the laser. In the exercises, you have
checked that typically, the Rabi frequency is much smaller than the Bohr fre-
quency

|⌦| ⌧ !A (1.45)

unless one works with ‘strong laser fields’.
With this notation, the Schrödinger equation becomes

i@tce =
!A

2
ce +

⌦(t)

2
cg

i@tcg =
!A

2
cg +

⌦(t)

2
ce (1.46)

This is a coupled set of linear, ordinary differential equations with time-
dependent coefficients. This time dependence makes the solution more com-
plicated, and one has to apply an approximation to pursue.
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In mathematical physics, a more systematic technique is based on a separation of multiple
time scales. The ‘fast time scale’ is given by the Bohr frequency !A, and the ‘slow time
scale’ by the Rabi frequency ⌦, see Ineq.1.45. One can then derive small corrections to the
resonance approximation we find below.

1.9.3 Resonance approximation

The equations can be simplified by adopting a transformation of the probability
amplitudes ca with the following Ansatz:

ce(t) = c̃e(t) e
�i!t/2

cg(t) = c̃g(t) e
i!t/2 (1.47)

We shall assume that the prefactors c̃a(t) are ‘slowly varying envelopes’, while the
exponentials give ‘fast carrier waves’. (Think of radio signals that are modulated
with a slow acoustic signal.) The frequency ! is for the moment a free parameter.
In quantum optics, one says that the slow amplitudes c̃a(t) live ‘in frame rotating
at the frequency !’. (This picture has to do with spin resonance and the Bloch
sphere, see later.)

Working out the time-derivative of Eqs.(1.47), one finds (no approximation
yet) the equations of motion

i@tc̃e =
!A � !

2
c̃e +

⌦(t) ei!t

2
c̃g

i@tc̃g =
! � !A

2
c̃g +

⌦(t) e�i!t

2
c̃e (1.48)

The term with ! appears because the transformation (1.47) into the rotating
frame is time-dependent. One can now distinguish two choices

• interaction picture: ! = !A. The first term, from the free atom Hamiltonian
HA drops out, and the dynamics depends only on the atom+field coupling.
This is the starting point for (time-dependent) perturbation theory.

• rotating frame at the laser frequency: ! = !L. In combination with the
resonance approximation, we can then find a Schrödinger equation with
constant coefficients which is easier to solve. This is the starting point for
many applications in quantum optics.
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We adopt the second choice and fix the free parameter ! to the laser fre-
quency. This motivates the notation for the

detuning: � = !L � !A (1.49)

(again: Paris convention, other signs exist). The term with the Rabi frequency
becomes, using the complex notation of Eq.(1.41):

⌦(t) ei!t =
⇣
⌦ e�i!t + c.c.

⌘
ei!Lt = ⌦+ ⌦⇤e2i!Lt (1.50)

where the first term is constant and the second ‘varies rapidly’. We now apply
the

• resonance approximation (or ‘rotating wave approximation’ RWA): we as-
sume that the atomic dynamics is slow on the time scale 2⇡/!L of the laser
period and time-average the Schrödinger equation (1.48) over one period.
The second term in Eq.(1.50) averages to zero and we get

i@tc̃e = ��

2
c̃e +

⌦

2
c̃g

i@tc̃g =
�

2
c̃g +

⌦⇤

2
c̃e (1.51)

This is nicer equation because the coefficients are constant in time.

The argument leading to the RWA, based on time-averaging, is ‘heuristic’ and has to be ap-
plied with care. If we did the averaging on Eq.(1.46), for example, the atom+field coupling
would disappear.

There are other arguments that motivate the resonance approximation. For example, when
the field is also described quantum mechanically, it becomes an operator that generates and
destroys photons. A process that one neglects in the RWA corresponds to a ‘non-resonant
excitation’: the atom jumps to the upper state |ei and generates a photon. This process
involves an ‘energy mismatch’ O(h̄!A + h̄!L) and is therefore called ‘non-resonant’. It is not
forbidden in quantum mechanics, but it happens with a small amplitude. In the RWA, this
small amplitude is neglected.

There are observable effects where non-resonant (also known as ‘virtual’) processes play a
role and where the RWA must not be applied. An example are energy shifts in quantum-
electrodynamics like the Lamb shift or the Casimir-Polder shift.
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1.9.4 Rabi oscillations

The simplest case of atom-laser dynamics is a laser ‘on resonance’, i.e., !L = !A.
The Schrödinger equation (1.51) yields (we drop the tildes)

iċe =
⌦

2
cg (1.52)

iċg =
⌦

2
ce. (1.53)

where the Rabi frequency is chosen real for simplicity. With the initial conditions
cg(0) = 1, ce(0) = 0, the solution is

ċe = �i sin(⌦t/2) (1.54)

cg = cos(⌦t/2). (1.55)

The excited state probability thus oscillates between 0 and 1 at a frequency ⌦/2.
This phenomenon is called ‘Rabi flopping’. It differs from what one would guess
from ordinary time-dependent perturbation theory where one typically gets lin-
early increasing probabilities. That framework, however, applies only if the fi-
nal state of the transition lies in a continuum which is not the case here. Rabi
flopping also generalizes the perturbative result (1.110) which would give a
quadratic increase |ce|2 / t

2 that cannot continue for long times. But instead
of saturating, the atomic population returns to the ground state.

Every experimentalist is very happy when s/he observes Rabi oscillations. It
means that any dissipative processes have been controlled so that they happen
at a slower rate. In a realistic setting, one gets a damping of the oscillation
amplitude towards equilibrium populations.

Non-resonant case. Solved with the exponential of a linear combination of
Pauli matrices: write

H = � h̄

2
R (�3 cos ✓ + �1 sin ✓) = � h̄

2
R�R (1.56)

with tan ✓ = �⌦/� and R
2 = �2 + ⌦2. The matrix �R has the property �2

R =

and �3

R = �R. This permits to re-sum even and odd terms in the series expansion
of the exponential into cosine and sine functions. The unitary time evolution
operator becomes (in the rotating frame only)

U(t) = exp(�iHt/h̄) = cos(Rt/2) + i�R sin(Rt/2) (1.57)
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If this is applied to the ground state, (0, 1)T as a two-component vector, we can
read off the state at time t.

Details: exercise. Excited state population oscillates at frequency R (‘gen-
eralized Rabi frequency’), but with an amplitude < 1. The dependence of this
amplitude on the laser frequency (detuning �) can be called an ‘absorption line
shape’, it decays as 1/�2 for large detuning. The width is of the order of ⌦: this
is called ‘power broadening’.

Picture becomes wrong as the Rabi frequency gets weaker because the spon-
taneous emission rate �, another relevant frequency scale, sets in: the absorption
line shape cannot become narrower than �.

1.10 Mixed states and dissipation

The concept of the density operator generalizes the state vector familiar from
quantum mechanics. The main reason is that we also want to handle states (or
ensembles) which have a nonzero entropy (like thermal states have) or which
arise from processes that do not conserve entropy, like spontaneous decay.

See the exercises for a discussion of entropy.
In the field of quantum information, one adopts sometimes a quite mathe-

matical language. We shall follow this route and define a density operator by the
following properties

A density operator ⇢ is a hermitean operator on the Hilbert space H of the system.
(A N ⇥N -matrix if dimH = N is finite.)

⇢ is normalized to unit trace, tr ⇢ = 1.

⇢ is positive: for all | i 2 H, we have

0  h |⇢| i  h | i (1.58)

The expectation value of a system observable Â is given by the ‘trace rule’

hÂi = tr(Â⇢) = tr(⇢Â) (1.59)

where we have used a cyclic permutation under the trace.

These conditions imply that the eigenvalues of ⇢ are real numbers in the interval
0 . . . 1 whose sum is unity. They can therefore be interpreted as probabilities.
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Indeed the diagonal matrix element h |⇢| i in Eq.(1.58) is physically interpreted
as the probability to find the system in the state | i when it has been prepared
in the density operator ⇢. (This does not tell anything how this measurement is
implemented or what observable one has to measure.)

1.10.1 Projectors = pure states

One class of states is familiar from ordinary quantum mechanics:

If | i is a normalized state vector in the Hilbert space, then the projector

| i = | ih | (1.60)

is a density operator. It is the density operator for a system prepared in the state
| i.

It is simple the check that | i satisfies all conditions for a density operator. As
an example, let us work out its trace by using a set of basis vectors |ni

tr(| ih |) =
X

n

hn| ih |ni =
X

n

|hn| i|2 = 1 (1.61)

In the last sum, we recognize the sum over the squares of the coefficients cn =

hn| i that represent the vector | i in the chosen basis. This is just the norm of the
state. Alternatively, we could have used the completeness relation

P
n |nihn| = .

By a similar calculation, one also checks that the trace rule is equivalent to
the standard expectation value of observables:

tr(Â⇢) =
X

n

hn|Â| ih |ni =
X

n

h |nihn|Â| i = h |Â| i (1.62)

Density operators that are built from projectors are called pure states. A for-
mal definition that requires only the knowledge of the density operator ⇢ is based
on a well-known property of projectors:

A density operator ⇢ is called a pure state when ⇢2 = ⇢.

It is easy to see that for a pure state, the eigenvalues pn must satisfy the property
P

n p
2

n = 1. Since we have 0  pn  1, this can only be satisfied if exactly
one term in the sum is nonzero, say p1 = 1, while all others are zero. But this

29



means, using the eigenvector | 1i, that the ‘spectral representation’ of the density
operator reduces to a single term:

⇢ =
X

n

pn| nih n| = | 1ih 1| (1.63)

in other words: ⇢ is a projector.

1.10.2 Purity and entropy

The definition of a pure state above can be exploited to define a quantitative
measure of how far a state is from the set of pure states:

The ‘mixedness’ Mx(⇢) of a density operator is given by

Mx(⇢) =
tr(⇢� ⇢

2)

tr ⇢
= 1� tr ⇢2 (1.64)

where the last equation holds for trace-normalized density operators. Con-
versely, the purity is Pu(⇢) = 1�Mx(⇢).

For a pure state, we have Mx(⇢) = 0 and Pu(⇢) = 1 States with Mx(⇢) > 0

(Pu(⇢) < 1) are called non-pure or mixed.
An alternative measure of purity is provided by the entropy:

The entropy of a density operator is given formally and in terms of its eigenvalues
pn by

S(⇢) = �tr ⇢ log ⇢ = �
X

n

pn log pn (1.65)

A pure state has entropy S(⇢) = 0 if we remember the limiting value
limx!0 x log x = 0. (Apply the De L’Hôpital rule to the ratio x/(1/ log x) or to
log x/(1/x).)

If we make the formal expansion log ⇢ ⇡ log + ⇢ � + . . ., define log =

0, and stop after the linear term, we recover the purity defined above. The
purity has the advantage that the logarithm of the matrix is never needed (and
no diagonalization neither). In quantum information, one uses other types of
entropy measures that share similar monotony properties: they are zero for pure
states and increase as the state becomes mixed.
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Mixed states and convexity

As an example of a mixed state, let us consider two pure states | i, |�i and form
the following linear combination of projectors

⇢ = p| ih |+ q|�ih�|, p, q > 0, p+ q = 1 (1.66)

This is called a statistical mixture of the states | i, |�i.
Let us interpret this as a state preparation procedure with incomplete knowl-

edge: a machine prepares a state | i with probability p and otherwise the state
|�i. The only possible prediction of the average value of any observable Â that
we can then make is the following

hÂi = ph |Â| i+ qh�|Â|�i = tr(Â⇢) (1.67)

which is nothing but the definition of the average for a density operator. This
equation combines in an elegant way ‘quantum’ and ‘classical’ probabilities: in-
deed, the expectation values h |Â| i are typical for quantum mechanics, with
the distribution of possible values for Â given by the wave function of | i (the
expansion of the state over a basis of eigenstates of Â). On the other hand, the
weighting factors p, q in Eq.(1.67) are simply what one would do in classical
statistics, when events occur with some probabilities and an average outcome is
asked for.

In a thermal state (statistical physics), a typical mixture occurs in thermal
equilibrium: the states | i and |�i are energy eigenstates (with energies Ee and
Eg, say). The corresponding probabilities are proportional to the Boltzmann fac-
tor p ⇠ e�Ee/kT where T is the temperature of the system (and k the Boltzmann
constant). The average value hÂi in thermal equilibrium is then the combination
of quantum expectation values in the energy eigenstates, averaged over the clas-
sical probabilities of finding these states in the thermal ensemble. For a system
with n energy levels (subscript T for thermal equilibrium):

hÂiT =
X

n

e�En/kT

Z
hn|Â|ni (1.68)

Here, Z =
P

n e
�En/kT is the partition function (Zustandssumme) that provides

the normalization for the Boltzmann probabilities.
From a geometrical viewpoint, the ‘mixing rule’ (1.66) implies that for any

two points in the set of density operators, also the straight line that joins them
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is included in the set. This straight line is just the linear combination with real
coefficients between 0 and 1. In mathematics, this is called a convex linear com-
bination. A set is called convex if it contains for any two points, also the line
between the two.

We can of course generalize Eq.(1.66) to the mixing of any two density oper-
ators ⇢1, ⇢2

⇢ = p⇢1 + q⇢2, p, q > 0, p+ q = 1 (1.69)

It is easy to check that ⇢ defined in this way is again a density operator. The phys-
ical interpretation can again be formulated in terms of an incomplete knowledge
about state preparation.

In mathematics, convex sets are conveniently characterized when their ‘ex-
treme points’ are known. Intuitively speaking, extreme points correspond to
‘corners’ of the convex set from which lines into its interior can be drawn. In
quantum information, extreme points are closely related to pure states. We shall
encounter below a very simple convex set: a sphere (the Bloch sphere). Its ex-
treme points are all those on the surface of the sphere, while the points in the
interior correspond to mixed states.

One even more formal way of introducing a density operator or a quantum state: in the
axiomatic language of quantum information, a ‘state’ ⇢ is a mapping from a set of observables
to their expectation values

⇢ : A 7! ⇢(A) = hAi⇢ (1.70)

Linear map with ⇢( ) = 1 (real or complex coefficients depending on choice of observable
algebra) and ⇢(A) real for a hermitean A.

Consider the familiar linear combinations in Hilbert space, |�i = ↵|ei + �|gi, with basis
vectors |ei and |gi, say. These states play a special role and are called pure states. They also
correspond to special observables: projectors

� = |�ih�| (1.71)

This is also a hermitean operator with eigenvalues 0 or 1. A physical state has the property
that it is positive:

⇢( �) � 0 for all |�i (1.72)

Physical interpretation: this is the probability of finding the system in the pure state |�i,
which clearly must be a positive number.

Definition of density matrix (or density operator): any linear map on the vector space of
observables can be represented by a suitable linear form

⇢(A) = tr(⇢̄A) (1.73)
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where ⇢̄ is a hermitean operator and tr(ÂB̂) is a natural scalar product on the space of
(hermitean) observables. This rule corresponds to the usual calculation of expectation values
for mixed states in quantum statistics. In a finite-dimensional system, it corresponds to the
duality between linear forms and vectors: each linear form can be represented as a scalar
product with a suitable vector. This becomes the Riesz representation theorem in an infinite-
dimensional Hilbert space.

1.10.3 Two-level systems: Bloch sphere

Density matrix

Let us analyze the set of density operators for a two-level system using a simple
parametrization. The operator ⇢ has a matrix representation in the basis |ei, |gi

⇢ =

0

@ p ⇢eg

⇢
⇤
eg

q

1

A , p+ q = 1 (1.74)

We have p, q > 0 because these elements correspond to diagonal matrix ele-
ments p = he|⇢|ei = (1, 0)⇢

⇣
1

0

⌘
� 0. Their sum is unity because of the trace-

normalization. A single complex number ⇢eg gives both off-diagonal elements:

The off-diagonal elements of a density matrix are called coherences. They quan-
tify to what extent (in this basis), the quantum state is rather a ‘coherent super-
position’ as opposed to a ‘classical mixture’. In quantum optics, ‘states with large
coherence’ are often very useful, but also fragile.

The coherences cannot be very large in order not to spoil the positivity of ⇢.
This can be worked out from h�|⇢|�i with an ‘optimized’ superposition state |�i.
We follow here a faster route and compute simply the mixedness of the density
operator. It must be positive or zero:

Mx(⇢) = 1� tr ⇢2 = 1� (p2+ |⇢eg|2+ |⇢eg|2+q
2) = 1�p

2�q
2�2|⇢eg|2 � 0 (1.75)

We thus have an upper bound for the modulus |⇢eg|. For equal probabilities
p = q = 1

2
(which looks like a ‘mixed state’), we get the inequality |⇢eg|  1/2. At

the upper limit |⇢eg| = 1/2, we even get a pure state! On the other side, if p = 1,
then necessarily ⇢eg = 0: in the vicinity of the basis states, there is little space for
‘coherence’. (We shall see in the next section how significant coherences can be
achieved nevertheless.)
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To summarize, we have found three independent real parameters (p, Re ⇢eg,
and Im ⇢eg) whose range is some compact domain. What can be said about the
geometry of this domain?

Bloch vector

Any hermitean 2 ⇥ 2 matrix with trace 1 can be written as a linear combination
of hermitean matrices that are well known from quantum mechanics as the Pauli
matrices (check the signs in �2)

⇢ =
1

2
( + s3�3 + s1�1 + s2�2) =

1

2

0

@ 1 + s3 s1 + is2
s1 � is2 1� s3

1

A (1.76)

The three numbers si (i = 1, 2, 3) are called the components of the Bloch vector.
If we remember our notation p, q for the diagonal elements, we have s3 = p� q.
Similarly, s1 and s2 are proportional to the real and imaginary parts of ⇢eg. The
inequality (1.75) for the real parameters takes a very simple form for the Bloch
vector

s
2

3
+ s

2

1
+ s

2

2
 1 (1.77)

This means that the vector s = (s1, s2, s3) lies inside a sphere of radius 1 in
three-dimensional space.

Exercises: the components of the Bloch vector are the expectation values of the Pauli matrices:

si = h�ii = tr(�i⇢) (1.78)

The mixedness is determined by the length of the Bloch vector only

Mx(⇢) = 1� tr(⇢̄2) = . . . =
1

2
(1� s2) (1.79)

• picture!

Pure states

The language of a spin 1/2 is often used to visualize the dynamics of a two-level
atom. Let us compute the components of the average spin vector (s1, s2, s3)T ⌘
h�i (the ‘Bloch vector’) in the pure state | (t)i = (ce(t), cg(t))T :

s3 = |ce|2 � |cg|2 (1.80)

s1 � is2 = 2c⇤gce (1.81)
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Observe that s2 = s
2

1
+ s

2

2
+ s

3

3
= 1 for a pure state. The component s3 is related

to the occupation probabilities |ce(t)|2, |cg(t)|2 (the ‘populations’): it gives the
inversion, i.e., the difference of the ground and excited state populations. In the
ground state, one has h�3i = �1. The other two components (1.81) are only
nonzero when the atom is in a superposition of the ground and excited states.

Figure 1.1: Upper left: Bloch vector for an atom in the ground state. Upper right:
excited state. Lower left: superposition of ground and excited states with equal
weight. The arrow along the ‘equator’ indicates the direction of free rotation of
the Bloch vector without a laser field. Lower right: an initial ground state starts
to undergo resonant Rabi oscillations, as indicated by the arrow tangent to the
‘south pole’. The x1-axis points to the right, the x3-axis upwards.

In the exercises, you show that the Bloch vector is in general constrained
by s

2  1, due to the positivity condition (1.150) of the density matrix. It can
thus be represented by a point in a sphere, the ‘Bloch sphere’ (see Fig.1.1). On
the sphere surface are located the pure states: the ‘south pole’ corresponds to
an atom in the ground state, while an excited atom is at the ‘north pole’. In
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between these two, the atom is in a superposition of ground and excited states.
In particular, around the equator, both ground and excited state are occupied
with probability 1/2 (the inversion is zero). The longitude along the equator is
fixed by the phase difference between ground and excited state.

If no external laser field is applied, the Bloch vector rotates at the frequency
!A clockwise around the vertical axis. In particular, the occupation probabilites
do not change with time: the inversion, being the projection onto the vertical
axis, is constant. With the laser on, we shall see that the rotation axis gets tilted
so that an atom initially in the ground state develops an excited component.

1.10.4 Bloch equations

Two-level system with atom+field Hamiltonian in resonance approximation,
plus spontaneous emission and dephasing. The equations of motion for the Bloch
vector are called the (optical) Bloch equations

ds1
dt

= �s2 � �s1

ds2
dt

= ��s1 � ⌦s3 � �s2

ds3
dt

= ⌦s2 � �(s3 + 1) (1.82)

in rotating frame at ! = !L, detuning � = !L � !A, Rabi frequency ⌦ ⇠ EL.
Pictures from numerical solution: Bloch vector is spiralling around an axis

given by the Hamiltonian (1.56): tilted by the angle ✓ with respect to the ‘north-
south-axis’. The spiralling is due to decoherence and spontaneous emission: de-
coherence (rate �) ‘contracts’ the Bloch sphere towards to the north-south-axis,
while the spontaneous decay rate � contracts the sphere vertically and pushes it
‘down’ towards the ground state.
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hydrogen H
lithium Li
sodium Natrium Na
potassium Kalium K
rubidium Rb
cesium Cs
francium Fr

n l = 0 l = 1 l = 2 . . .
. . . . . . . . . . . . . . .
3 3s 3p 3d
2 2s 2p
1 1s

Table 1.1: Left: the series of alkaline atoms. Right: Spectroscopic notation for
energy levels of hydrogen-like atoms.

1.11 More atomic physics
Detailed treatment not covered in WS 16/17.

An atom can be modelled as a collection of charged point particles. The
simplest Hamiltonian one can write is therefore

HA =
X

↵

p
2

↵

2M↵
+

1

2

X

↵ 6=�

e↵e�

4⇡"0|x↵ � x�|
(1.83)

where ↵ labels the particles, M↵, e↵ are their masses and charges. We try to
use in this lecture SI units. (In cgs units, drop the 4⇡"0.) The interaction term
corresponds to the electrostatic (or Coulomb) field created by the charges.

More advanced atomic models adopt a relativistic viewpoint, take into ac-
count the electron spin, the magnetic field created by the motion of the particles,
the corresponding spin-orbit interaction, the spin-spin coupling, the hyperfine in-
teraction etc. Theoretical atomic physics computes all these corrections to the
energy levels and matrix elements ‘from first principles’ (see the textbook by
Haken & Wolf (2000), for example). Typically, no simple analytical results can
be found for atoms with more than two or three electrons, say.

For our purposes, we are not interested in so much detail. Instead, we use a
simplified description of the atom states that captures their essential properties.
Good examples are atoms with a single electron in the outer shell (the alkaline
series), as listed in table 1.1. Their energy levels are to a good approximation
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given by a modified Balmer formula

Enl = � e
2

8⇡"0a0 (n+ �l)
2
= � Ryd

(n+ �l)
2
,

n = 1, 2 . . .

l = 0, . . . n� 1
(1.84)

The Bohr radius a0 = 4⇡"0h̄
2
/me

2 ⇡ 0.5 Å gives the typical size of the electron
cloud, and the ‘quantum defect’ �l lifts the degeneracy of the hydrogen levels.The
energy scale is given by the Rydberg constant Ryd ⇡ 13.6 eV.

The charge Z|e| of the nucleus enters the Balmer formula via the quantum defects �l. In fact,
the outer electron ‘sees’ the nucleus screened by the core electrons. This gives a Coulomb
potential as for the hydrogen atom, with some modifications due to the core electrons. These
are responsible for the lifted degeneracy between the l states.

The frequency of electromagnetic radiation emitted by atoms in a process
|ii ! |fi is given according to Bohr by

!if =
Ei � Ef

h̄
(1.85)

For two typical energy levels Ei,f , h̄!if is also of the order of 1Ryd. If we compute
the wavelength of the corresponding electromagnetic radiation, we find

�if ⇠ 2⇡h̄c

Ryd
=

4⇡

↵fs

a0 � a0 (1.86)

fine structure constant ↵fs =
e
2

4⇡"0h̄c
⇡ 1

137
, (1.87)

which is much longer than the typical size of the atom (the Bohr radius gives
the extension of the electronic orbitals). For typical light fields, the atom thus
appears like a pointlike object. This property justifies the ‘long wavelength ap-
proximation’ that simplifies the Hamiltonian for the atom–light interaction.

Another way of looking at the result (1.86) is to interpret the inverse fine
structure constant, ↵�1

fs
= c(4⇡"0h̄/e2) as the ratio between the speed of light

c and the typical velocity for an electron in the Hydrogen atom (the natural
velocity scale in the so-called ‘atomic units’). We see that this velocity is only a
few percent of c, hence we expect that the non-relativistic description we have
used so far is a good approximation.
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1.11.1 Atom-light interaction

Minimal coupling

According to the rules of electrodynamics, the interaction between a collection of
charges with a given electromagnetic field is described by the ‘minimal coupling’
Hamiltonian. This corresponds to the replacement p↵ 7! p↵ � e↵A(x↵, t) where
A(r, t) is the vector potential. In this chapter, this is a given time-dependent
function. It will become an operator when the field is quantized. In addition,
there is the potential energy due to an ‘external’ scalar potential �ext(x, t), so that
we get

HAF =
X

↵

(p↵ � e↵A(x↵, t))
2

2M↵
+

1

2

X

↵ 6=�

e↵e�

4⇡"0|x↵ � x�|
+
X

↵

e↵�ext(x↵, t). (1.88)

The minimal coupling prescription is related to the freedom of choosing the
phase reference of the wave function, as is seen in more detail in the exercises.

Remark. This freedom is also called ‘local U(1) gauge invariance’ because phase factors form
the unitary group U(1). Local changes in the phase of the wave function generate terms in the
Schrödinger equation that can be combined with gauge transformations for the electromagnetic
potentials. This connection to the electromagnetic gauge transformations is of great importance
for quantum field theory. It allows to construct the coupling to the electromagnetic field from
the symmetry properties of the quantum fields. For example, there are theories where electrons
and neutrinos are combined into a two-component field, and the interactions are invariant under
SU(2) transformations that mix these two, plus U(1) transformations of the phase common to the
two components. The group SU(2)⇥U(1) is four-dimensional and has four ‘generators’. Each of
them corresponds to a vector potential that interacts with the two-component field. In addition
to the standard electromagnetic potential (the ‘photon’), there are interactions associated to the
‘massive vector bosons’, called W

± and Z
0. They convey the ‘weak interaction’ that is responsible

for � decay. More details in any book on quantum field theory. I sometimes use the one by
Itzykson & Zuber (2006).

When the minimal coupling Hamiltonian (1.88) is expanded to lowest order
in the charges e↵, we obtain the so called ‘p · A’ interaction

Hint = �
X

↵

e↵

2M↵
{p↵ ·A(x↵, t) +A(x↵, t) · p↵}+

X

↵

e↵�ext(x↵, t). (1.89)

In the Coulomb gauge where r·A = 0, the ordering of the operators is irrelevant.
This interaction is linear in the vector potential, but there is also a second-order
(or ‘diamagnetic’) term

Hdia =
X

↵

e
2

↵A
2(x↵, t)

2M↵
(1.90)
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When calculations are pushed to second order in the p · A-coupling, the dia-
magnetic interaction must be included as well, for consistency. This makes the
‘book-keeping’ in perturbation theory complicated.

Gauge transformation. There are essentially two schools that treat the scalar potential in very
different ways.

(1) Either one is interested in electromagnetic fields on short scales compared to the wave-
length (called “non-retarded limit”). Then one can ignore the vector potential and use only the
scalar potential �ext to describe the matter-field interaction. This applies, for example, to the
interaction of atoms or matter with electrons (scattering experiments).

(2) Or the wavelength is an important scale. Then one can even choose a gauge where
�ext = 0, and only the vector potential is nonzero.

Sometimes a mixture of the two schemes is needed, for example when light creates charge
carriers, like in semiconductors or in the photoelectric effect.

Electric dipole coupling

A simpler approach is possible, however. We first make the approximation that
the field varies slowly on the scale of the displacements x↵ of the charges in the
atom. Then we can replace, to lowest order, A(x↵, t) ⇡ A(R, t) where R is the
atomic center of charge. This is called the ‘long-wavelength approximation’ that
is well justified for fields near-resonant with typical atomic transitions. Within
this approximation, we can find a simpler interaction Hamiltonian that is linear
in the electromagnetic field. It is called the ‘d · E’ coupling and is strictly linear
in the electric field:

Hint = �d · E(R, t),

d =
X

↵

e↵(x↵ �R), (1.91)

where d is the electric dipole moment of the atom relative to R. This version of
the d ·E interaction can be derived from the minimal coupling Hamiltonian with
a gauge transformation (see the exercises) from the minimal coupling Hamil-
tonian in the long-wavelength approximation, without invoking an additional
approximation.

Gauge transformation. Change from the vector potential A(x, t) to

A0(x, t) = A(x, t)�r�(x, t), �(x, t) = (x�R) ·A(R, t) (1.92)
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where �(x, t) is called the ‘gauge function’. It ensures that A0(R, t) = 0 at all times. Since the
gauge function is time-dependent, the scalar potential also changes:

�
0(x, t) = �(x, t) + @t�(x, t) = �(x, t) + (x�R) · @tA(R, t) (1.93)

If we simply insert these ‘new potentials’ into the minimal coupling Hamiltonian, we get

H
0
dia = 0, H

0
int = +

X

↵

e↵ {�ext(x↵, t) + (x↵ �R) · @tA(R, t)} (1.94)

Note that the diamagnetic term cancels without further approximation. We expand the scalar
potential for small x↵ �R and get

H
0
int = +�ext(R, t)

X

↵

e↵ +
X

↵

e↵(x↵ �R) · {r�ext(R, t) + ·@tA(R, t)} (1.95)

The first term cancels if the system of charges is globally neutral. In the second term, we rec-
ognize the expression of the electric field E(R, t) in terms of the potentials. Hence we find the
electric dipole Hamiltonian (1.91).

The advantages of the electric dipole coupling are: the atom couples directly
to the field; there is no quadratic interaction term. One must not forget that
between the two interactions, the wave function (the atomic state) differs by a
unitary transformation. Otherwise, some matrix elements or transition rates may
come out differently. This issue is discussed in great detail in the book ‘Molec-
ular Quantum Electrodynamics’ by Craig & Thirunamachandran (1984) and in
Chap. IV of ‘Photons and Atoms – Introduction to Quantum Electrodynamics’ by
Cohen-Tannoudji & al. (1987).

1.11.2 Selection rules

Since the electric dipole moment determines the interaction with the light field,
a few remarks on its matrix elements are in order. We take as a starting point the
basis of the stationary states of an atom, described by the Hamiltonian (1.83).
These states are typically described by quantum numbers like parity, angular mo-
mentum etc. The ‘selection rules’ specify for which states we know by symmetry
that the matrix elements of the electric dipole moment vanish. In that case, the
corresponding states are not connected by an ‘electric dipole transition’, or the
transition is ‘dipole-forbidden’.
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Parity. We say that a state |ai has a defined parity Pa = ±1 when the electronic
wave function  ({x↵}) “transforms like” Pa  ({x↵}) when all coordinates are
transformed as x↵ 7! �x↵. This means that

(P̂ )({�x↵}) =  ({�x↵}) = Pa  ({x↵}) (1.96)

where (P̂ ) denotes the action of the parity operator on the wave function.4 If
now |ai has a well-defined parity, then it is easy to show that ha|d|ai = 0 (see
lecture). In addition, the matrix element ha|d|bi is only nonzero when |ai and |bi
have different parity. This is an example of a “selection rule”. It provides a simple
argument to exclude certain transitions from happening under the electric-dipole
coupling. We shall see below that an off-diagonal matrix element like ha|d|bi is
essential when one wants to induce a “quantum jump” from one level to another
with light.

Energy. Selection rules often arise when the system has certains symmetries.
See a few examples below. The simplest symmetry is “translation in time”, i.e.,
the system Hamiltonian does not depend on time. We then know from classical
mechanics that energy is a conserved quantity. This is also true in quantum
mechanics and quantum optics. The corresponding selection rule for atom-light
interaction is the Bohr-Sommerfeld rule for the photon (angular) frequency !

that can induce a transition between two levels |ai and |bi:

h̄! = |Eb � Ea|. (1.97)

This formula is in fact one of the birth certificates of quantum theory – remem-
ber that quantum mechanics was developed to explain the discrete frequencies
observed in the radiation spectra of atoms.

Angular momentum. If there is no electron spin, this is given by l, and by j = l± 1
2 for hydrogen-

like atoms where one spin of a non-paired electron is present. The vector operator d transforms
under rotation like a spin 1 (there are three different basis vectors). One can introduce a basis
eq (q = �1, 0, 1) that are eigenvectors of L3 as well and write d =

P
q dqeq. The product eq|l,mi

then is an eigenstate of L3 with eigenvalue q +m. Therefore, the matrix element with |l0,m0i is
only nonzero when m

0 = q +m. We find the selection rule

|m�m
0|  1.

4In the simple one-dimensional problems you remember from Quantum Mechanics I, wave
functions that are ‘even’ or ‘odd’ have a well-defined parity. But there are also wave function that
are neither even nor odd. One says that these do not have a well-defined parity.
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In addition, the product states eq|l,mi can be expanded onto eigenstates of L2. The rules for the
‘addition of angular momentum’ imply that only angular momenta l

0 = l� 1, l, l+1 occur in this
expansion. This gives the selection rule

|l � l
0|  1.

Total momentum. An atom that is in a plane wave state regarding its centre-of-mass motion,
with momentum P receives an additional momentum h̄k when a photon from a plane electro-
magnetic wave with wave vector k is absorbed. The corresponding ‘recoil velocity’ h̄k/M is of
the order of a few mm/s to a few cm/s for typical atoms. The atomic recoil plays an important
role for atom deceleration and cooling with laser light.

1.11.3 Two-level atoms

For the rest of this lecture, it will be sufficient to write the atomic Hamiltonian
in the form

HA =
X

n

En|nihn|, (1.98)

where the states |ni are the stationary states corresponding to the energy eigen-
value En. But even this form is too complicated: it contains too many terms
when dealing with near-resonant laser light. This is the setting we shall focus on
here. One can then retain only a few states to describe the atom.

Two-level observables

Atomic Hamiltonian. The standard notation for the two states is |gi for the
ground state and |ei for the excited state. The Bohr frequency is often written
!A = !e�!g > 0. The atomic energy levels are often referenced to a zero energy
lying between both states, this gives:

HA =
h̄!A

2
|eihe|� h̄!A

2
|gihg| (1.99)

It is also useful to identify the two-dimensional Hilbert space of the two-level
atom with the 2, using the basis vectors (1, 0)T $ |ei and (0, 1)T $ |gi. The
Hamiltonian then becomes the diagonal matrix

HA =
h̄!A

2

0

@ 1 0

0 �1

1

A =
h̄!A

2
�3 (1.100)

where �3 is the third Pauli matrix. Indeed, it is obvious that a two-dimensional
Hilbert space can be identified with the Hilbert space of a spin 1/2.
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Observables energy, inversion, dipole.

d = dge� + d
⇤
ge�

† = dge|gihe|+ d
⇤
ge|eihg| (1.101)

where the vector of matrix elements of the dipole operator is dge = hg|d|ei. Only
off-diagonal matrix elements because of the parity selection rule.

1.11.4 Resonance approximation

Interaction Hamiltonian

The interaction with a monochromatic laser field can be described by the Hamil-
tonian

H = HA � d · E(t) (1.102)

E(t) = E e�i!Lt + c.c.

d = dge|gihe|+ h.c.

where the complex vector E gives the amplitude of the electric field. It is evalu-
ated at the position of the atom, we drop this dependence here. The laser (an-
gular) frequency is !L. The term E e�i!Lt is called the ‘positive frequency part’ of
the field: its time evolution is the same as for a solution of the time-dependent
Schrödinger equation (with positive energy h̄!L).

We re-write Eq.(1.102) in terms of two separately hermitean operators

�d · E(t) =
h̄

2

⇣
⌦ e�i!Lt|eihg|+ h.c.

⌘

+
h̄

2

⇣
⌦0 ei!Lt|eihg|+ h.c.

⌘
(1.103)

h̄⌦

2
= �d

⇤
ge · E, ( Rabi frequency ) (1.104)

where ⌦ is a complex-valued frequency, and ⌦0 has a similar expression as
Eq.(1.104). (We follow the Paris convention and notation for ⌦.)

If the field is quantized, Eq.(1.102) applies in similar form in the interaction picture and involves
photon annihilation operators aL in place of the complex amplitude E (and creation operators
a
†
L in place of E⇤. The fully quantized interaction Hamiltonian is derived from the quantized

field operator and takes the form:

�d(t) ·E(t) 7!

�
X

k

Ek
⇣
ak(t)fk · d(t) + a

†
k(t)f

⇤
k · d(t)

⌘
(1.105)
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where Ek =
p
h̄!k/(2"0V ) is the electric field amplitude at the one-photon level and fk = fk(R)

is the normalized mode function, evaluated at the position R of the atom. We have written
Eq.(1.105) in the “interaction picture” where all operators carry their “free” time dependence.
For the photon annihilation operator ak(t) = ak e�i!kt, which is the operator in the Heisenberg
picture under the free field Hamiltonian. The time dependence of the (freely evolving) dipole
operator is given by d(t) = exp(iHAt)d exp(�iHAt).

In order to examine what happens to an atom illuminated by a laser field, we
make the Ansatz

| (t)i = c̃e(t) e
�i!t/2|ei+ c̃g(t) e

+i!t/2|gi (1.106)

where the frequency ! is chosen later. The amplitudes describe the two-level sys-
tem in a picture that differs from the usual choice ce(t), cg(t). The Schrödinger
equation for c̃e contains a correction term because of the time-dependent expo-
nential. One gets

ih̄@tc̃e =

 

Ee �
h̄!

2

!

c̃e +
h̄

2
⌦ e�i(!L�!)t c̃g

+
h̄

2
⌦0 ei(!L+!)t c̃g (1.107)

Now, we can take the choice Ee = 1

2
h̄!A for the excited state energy. There are

now two “natural choices” for !:

(1) interaction picture: ! = !A, and the first term disappears. The time de-
pendence of c̃e is then only due to the atom-laser interaction. This picture
is suitable for perturbation theory.

(2) rotating frame: ! = !L, and the second term becomes time-independent.
This picture is suitable for concrete calculations in quantum optics, once
we have convinced outselves what is the meaning of the third term.

Time-dependent perturbation theory

We now make the choice (1) of the interaction picture and solve the equation for
c̃e with the help of time-dependent perturbation theory. This proceeds by iden-
tifying the interaction Hamiltonian as a “small term” and by counting ascending
powers.
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At the order zero, HA is the only Hamiltonian. Keeping in mind the choice
! = !A, Eq.(1.107) reduces to

@tc̃
(0)

e = 0, @tc̃
(0)

g = 0 (1.108)

where the equation for c̃g is similar to Eq.(1.107). As expected from the analogy
to the time-dependent Schrödinger equation (for the “free” atom), the ampli-
tudes are constants at order zero. The natural initial condition “atom is in state
|gi translates into

c̃
(0)

e (t) = 0, c̃
(0)

g (t) = 1. (1.109)

To the first order, we get from Eq.(1.107)

ih̄@tc̃
(1)

e =
h̄

2
⌦ e�i(!L�!A)t

c̃
(0)

g +
h̄

2
⌦0 ei(!L+!A)t

c̃
(0)

g (1.110)

Now, since we know c
(0)

g (t) as a (constant) function of time, this can be integrated
immediately to give

ce(t) = ce(0) +
⌦

2

e�i(!L�!A)t � 1

!L � !A
� ⌦0

2

ei(!A+!L)t � 1

!A + !L
(1.111)

The two terms in this result have distinct physical interpretations, related to the
denominators.

Absorption. The first denominator leads to a ‘large’ result when !A = !L.
One says that the atom went from the state |gi to the higher-lying state |ei by
absorbing one ‘energy quantum’ (‘photon’). (Recall that the amplitude ce for the
state |ei is increased in Eq.(1.111).) This process is governed by the ‘positive
frequency’ component ⌦ e�i!Lt of the interaction Hamiltonian (corresponding to
the positive frequency component of the electromagnetic field). In the quantized
description of the light field, this component corresponds to an ‘annihilation
operator’ that removes one photon from the field. If we fix the states |gi and
|ei such that the condition for absorption is satisfied, then the second term in
Eq.(1.111) has a ‘large’ denominator, !A + !L ⇡ 2!A. This term is therefore
much smaller than the first one, by a factor of the order O(10�6) for laser fields of
reasonable intensity (see exercise). This suggests that we can neglect this term.
This approximation is called the ‘resonance approximation’ (or the ‘rotating wave
approximation’, an admittedly strange name). If we keep the non-resonant term,
we deal in the quantum theory with a ‘virtual’ process where the atom passes into
a state with a higher energy and at the same time, a photon is created.
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Emission. If we had started with the atom in the excited state |ei, one would
get a resonant contribution again for !L = !A, with a large amplitude be-
ing created in |gi. This corresponds to a transition with the energy balance
Ee = Eg + h̄!L: the atom makes a transition to a lower-lying state, and in the
quantized field description, a ‘photon’ is created (by the creation operator a

†
k

in the expansion of the field operator). The non-resonant term in this setting
would correspond to the atom decaying to the ground state and absorbing a
photon, clearly a virtual process.

To summarize, in the resonance approximation, we only retain those parts
of the interaction Hamiltonian where the excitation of the atom (the oper-
ator �† = |eihg| is accompanied by a positive frequency laser field E e�i!Lt.
This approximation is consistent with the two-level approximation where right
from start, we only considered atomic levels whose Bohr frequencies are near-
resonant with the laser.

This approximation is possible for a ‘detuning’ � = !L � !A small compared
to the typical differences between atomic transition frequencies. This condition
is easily achieved since transition frequencies (spectral lines) differ easily by
energies of the order of 1 eV, and this is a ‘huge’ detuning to drive an atomic
transition.

Remark. The description of absorption and emission, as we encounter it here, does not ex-
plicitly require the quantization of the light field. These processes also occur in a ‘classical’
time-dependent potential because energy is not conserved there, as is well known in classical
mechanics. One can push the analogy even further: a weak monochromatic excitation of a me-
chanical system reveals the system’s ‘resonance frequencies’. For an atom, these are apparently
given by the Bohr frequencies. The only difference to a mechanical system is that we are in-
clined to use different names for the excitations with positive and negative frequencies, since in
the atomic energy spectrum, there is a definite difference between ‘going up’ and ‘going down’
(there exists a ground state).

Atomic polarizability

The perturbative calculation can be used to determine the dipole moment that
the laser field induces in the atom. This dipole is, within the lowest order in the
perturbation, linear in the amplitude E of the laser, or equivalently, in the Rabi
frequency ⌦. As is discussed in more detail in the exercises (Problem 3.2), the
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polarizability is defined by equating the average (induced) dipole moment with
a function linear in the laser amplitude,

h (t)| (dge� + h.c.) | (t)i = ↵(!L)E e�i!Lt + h.c. (1.112)

Note that the asymptotic regime t ! 1 is taken here where the atomic dipole
oscillates at the frequency of the external field. Now, for the initial condition that
the atom starts in its ground state, the polarizability is

↵g(!) =
(2!eg/h̄)dge ⌦ d

⇤
ge

!2
eg
� !2

(1.113)

where two peaks at ! = ±!eg appear. These peaks are not damped – which is an
artefact because we ignored any damping processes to far. In practice, processes
called spontaneous emission, thermal absorption, and dephasing remove the di-
vergence of the polarizability ! = ±!eg and lead to a Lorentzian profile with a
nonzero linewidth. To calculate this, we need the quantum theory of the light
field.

RWA Hamiltonian in the rotating frame

We come back to the (near-)resonant interaction: it can be described by the
(effective) Hamiltonian

HAL = �d
⇤
geE e�i!Lt�

† � dgeE
⇤ ei!Lt� (1.114)

This is called the “rotating wave approximation”, a physically more transparent
name would be “resonance approximation”. The change into the picture (2)
(rotating frame) mentioned on p.45 above (! = !L) corresponds to the unitary
transformation

| (t)i = e�i
!Lt
2 �3 | ̃(t)i (1.115)

This gives for the state | ̃(t)i the following Hamiltonian

H = � h̄�

2
�3 +

h̄

2
(⌦⇤

� + ⌦�) � = !L � !A (1.116)

where the time-dependence of Eq.(1.114) has disappeared (exactly) and where
only the detuning � instead of the laser frequency appears (Paris convention for
the sign of �).
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With a quantized field, add the Hamiltonian HF for the field and make the replacement

h̄

2

�
⌦⇤

� + �
†⌦
�
7! �

X

k

Ek
n
a
†
kf

⇤
k · d⇤

eg� + �
†
akfk · deg

o
(1.117)

One could also read this as an operator-valued Rabi frequency per mode, ⌦̂k.

Spin 1/2 analogy. We now come back to the spin 1/2 analogy. The Hamiltonian (1.114) with
the atomic energies and the atom–laser interaction has the same form as the Hamiltonian for a
spin 1/2 in a time-dependent magnetic field,

Hspin = � ·B(t) (1.118)

where � is the vector of Pauli matrices and the ‘magnetic field’ B(t) actually has the dimensions of
an energy (we took a unity magnetic moment). The magnetic field rotates at the laser frequency
around the x3-axis:

B(t) =
h̄

2

0

B@
⌦ cos!Lt

⌦ sin!Lt

!A

1

CA (1.119)

It is useful to change the coordinate frame such that it co-rotates with this field (this is the
‘rotating frame’). In this frame, the ‘effective magnetic field’ is static5,

Be↵ =
h̄

2

0

B@
⌦

0

!A

1

CA . (1.120)

The transformation into the rotating frame also changes the wave function of our two-state
particle by a unitary transformation (this is the way a two-component spinor transforms under a
rotation of the coordinate axes)

U(t) = exp{�i!Lt�3/2} =

 
e�i!Lt/2 0

0 ei!Lt/2

!
(1.121)

We observe that this is the transformation we used in Eq.(1.106) to go into the interaction picture
(on resonance where !L = !A). This unitary transformation being time-dependent, we get also
a modification of the Hamiltonian proportional to �ih̄U†

@tU = �h̄!L�3. All told, we find the
Hamiltonian in the rotating frame

H = � h̄�

2
�3 +

h̄⌦

2
�1 (1.122)

where the detuning is given by the difference between the laser frequency and the atomic transi-
tion frequency

� = !L � !A. (1.123)

5If we had kept the nonresonant terms in the Hamiltonian, the magnetic field would also
show a time-dependent component rotating at the frequency 2!L.
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Note that the laser and atomic frequencies have disappeared from the Hamiltonian and only
their difference (the detuning) occurs. As a consequence, the relevant time scales (given by 1/�

and 1/⌦) are typically much longer than the optical period 2⇡/!L. On these long time scales,
nonresonant processes remain ‘virtual’ and cannnot be directly observed. This is consistent with
the neglect of nonresonant levels (two-state approximation) and of the nonresonant two-state
coupling (rotating wave approximation).

1.11.5 Rabi oscillations

The most simple case of atom-laser dynamics is a laser ‘on resonance’, i.e., !L =

!A. The Schrödinger equation for the Hamiltonian (1.116) yields (we drop the
tildes)

ih̄ċe =
h̄⌦

2
cg (1.124)

ih̄ċg =
h̄⌦

2
ce. (1.125)

where the Rabi frequency is chosen real for simplicity. With the initial conditions
cg(0) = 1, ce(0) = 0, the solution is

ċe = �i sin(⌦t/2) (1.126)

cg = cos(⌦t/2). (1.127)

The excited state probability thus oscillates between 0 and 1 at a frequency ⌦/2.
This phenomenon is called ‘Rabi flopping’. It differs from what one would guess
from ordinary time-dependent perturbation theory where one typically gets lin-
early increasing probabilities. That framework, however, applies only if the fi-
nal state of the transition lies in a continuum which is not the case here. Rabi
flopping also generalizes the perturbative result (1.110) which would give a
quadratic increase |ce|2 / t

2 that cannot continue for long times. But instead
of saturating, the atomic population returns to the ground state.

Every experimentalist is very happy when s/he observes Rabi oscillations. It
means that any dissipative processes have been controlled so that they happen
at a slower rate. In a realistic setting, one gets a damping of the oscillation
amplitude towards equilibrium populations.

Rabi pulses. Rabi oscillations with a fixed interaction time are often used to
implement coherent operations on an atom or spin. The corresponding evolution
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operator is given by (we focus on the resonant case)

U✓ = exp{�i✓�1/2} = cos(✓/2)� i�1 sin(✓/2) (1.128)

with ✓ = ⌦t. After one cycle of Rabi oscillations, ⌦t = 2⇡ (a ‘2⇡-pulse’), the
atom returns to its ground state — but its wave function has changed sign. This
sign change is well-known from spin 1/2 particles: the corresponding unitary
transformation reads

U2⇡ = cos(⇡)� i�1 sin(⇡) = �1 (1.129)

A more interesting manipulation is a ‘⇡-pulse’, ⌦t = ⇡, that flips the ground and
excited state:

U⇡ = cos(⇡/2)� i�1 sin(⇡/2) = �i�1 (1.130)

Finally, a ‘⇡/2-pulse’ takes the atom into a superposition of ground and excited
states with equal weight (a Bloch vector on the equator of the Bloch sphere)

U⇡/2 = cos(⇡/4)� i�1 sin(⇡/4) =
1� i�1p

2

U⇡/2|gi =
1p
2
|gi � ip

2
|ei

If the laser is shut off after such a pulse, the Bloch vector will continue to rotate
along the equator at the frequency �.

1.12 Dissipation and open system dynamics

We now describe how the dynamics of the atomic Bloch vector is modified when
so-called dissipative processes are taken into account. These processes occur
because the two-level system is not closed: it is in contact with the electromag-
netic field that carries away energy and information (entropy). In addition, it
is subject to vacuum fluctuations (see Chapter ??). The challenge of including
dissipation into quantum optics is that the equations of motion must be com-
patible some basic principles of quantum mechanics: states cannot evolve in an
arbitrary way because probabilities remain positive, for example.
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1.12.1 Spontaneous emission

As a consequence of the coupling to the quantized electromagnetic field, the ex-
cited state of the two-level atom decays by emitting a photon into an ‘empty’
mode of the electromagnetic field. This phenomenon can conveniently be de-
scribed by the equations of ‘radioactive decay’ (a pair of ‘rate equations’)

dpe
dt

= ��pe,
dpg
dt

= +�pe (1.131)

The rate � gives the probability per unit time of emitting a photon and putting
the atomic population from the excited state down to the ground state. The total
population is conserved, as it should be for a process where the atom just changes
its internal state. (In radioactive decay, ‘e’ would by a plutonium and ‘g’ an
uranium atom, and the ‘photon’ an ↵-particle.) In terms of the third component
of the Bloch vector (the inversion), we have the following equation

d

dt
h�3i

�����
decay

= ��(h�3i+ 1) (1.132)

We also need a prescription how to take into account such a process in the
dynamics of off-diagonal elements of the density matrix like ⇢eg. These equations
cannot be chosen arbitrarily because we require that the density operator ⇢ re-
mains positive under time evolution. We discuss this in more detail later in the
lecture. The result is that also the dipole components of the Bloch vector decay
exponentially

d

dt
h�i

�����
decay

= ��h�i (1.133)

The rate must satisfy the inequality � � �/2, otherwise one can find initial condi-
tions that evolve into states outside the Bloch sphere (i.e., a density matrix with
negative probabilities). The process (1.133) is sometimes called “dephasing” or
“decoherence” because it happens when the relative phase of a superposition
state, ↵|gi+ � ei✓|ei is “diffusing” in time (with a variance that increases linearly
with t like in Brownian motion). The off-diagonal elements of the density ma-
trix are sometimes called “coherences”, they determine to what extent one has
a genuine quantum superposition, distinct from a “classical” (or thermodynami-
cal) mixture.

To compute the spontaneous decay rate �, we need Fermi’s Golden Rule, a
standard result from time-dependent perturbation theory. We derive this after
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we have learned about the quantization of the electromagnetic field, but the
result is

� =
|dge|2!3

eg

3⇡"0h̄c3
(1.134)

with a typical value 1/� ⇠ 10 ns for transitions in the visible range and dipole
moments of the order of the Bohr magneton. We just note the scaling with the
fine structure constant

�

!eg

⇠ e
2

3⇡"0h̄c

a
2

0

�2
eg

⇠ ↵
3

fs
(1.135)

On the scale of the Bohr frequencies in the atom, the decay is thus very slow.

1.12.2 Bloch equations

One finds by applying the model for spontaneous decay that the average spin
vector evolves according to the following set of equations, now including dissi-
pation,

d

dt
h�i = � (i!A + �) h�i+ i(⌦/2) e�i!Lt h�3i (1.136)

d

dt
h�3i = ��(h�3i+ 1) + i

⇣
⌦⇤ ei!Lth�i � ⌦ e�i!Lth�†i

⌘
(1.137)

This is written within the rotating wave approximation (the Hamilto-
nian (1.114)) but not yet in the frame rotating at the laser frequency !L

(choice (2) on p.45). Using the transformation (1.115), one finds �(t) =

�̃(t) e�i!Lt with

d

dt
h�̃i = (i�� �) h�̃i+ i(⌦/2) h�3i (1.138)

d

dt
h�3i = ��(h�3i+ 1) + i

⇣
⌦⇤h�̃i � ⌦h�†i

⌘
(1.139)

Here, the frequencies enter via the detuning � = !L � !A (Paris convention,
some authors use the other sign).

1.12.3 Rate equation limit

Assume that dephasing rate � is “faster” than all other time scales. “Adiabatic
elimination of coherences” leads to

h�̃iad ⇡ i(⌦/2) h�3i
�� i�

(1.140)
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found by solving Eq.(1.138) in the steady state. Idea: find stationary state after
an initial transient. Time scale for transient is 1/�, hence short by assumption.
Assume that h�3i evolves slowly on this scale (“adiabatic following” of h�̃i).

Insert into Eq.(1.139) for the inversion gives the rate equation

d

dt
h�3i = ��(h�3i+ 1)� 2 Im (⌦⇤h�̃iad)

= ��(h�3i+ 1)� �|⌦|2
�2 +�2

| {z }
absorption

h�3i (1.141)

The last term is the rate by which the two-level system absorbs energy from
the laser (and gets excited). Indeed, for initial conditions in the ground state
h�3i = �1, one gets a positive derivative from Eq.(1.141).

Exercise. Calculate the time-averaged power absorbed by the two-level atom
using the formula from mechanics, Pabs = hḋ(t) ·E(t)i by taking the time average
and the quantum expectation value in the stationary state. Compare Pabs/h̄!L to
the absorption rate in Eq.(1.141).

Rate equations are often used in condensed matter when fluorescent sys-
tems like molecules or quantum dots are embedded in a solid environment.
In that case, the contact with the surrounding atoms and molecules leads to
a large value for �. In this limit, the induced dipole moment is quite small (see
Eq.(1.140)), and the relevant dynamics is well approximated by considering only
probabilities (occupation numbers, the inversion).

1.12.4 Collapse and revival
In this paragraph, we are using concepts from the quantized description of the field. Details
on that in the Chapter in field quantization.

If the light field is described as a single quantized mode, an additional feature
occurs in the Rabi oscillations. The key point is that the coupling Hamiltonian,
g(a†� + �

†
a), now couples the states |g, ni and |e, n � 1i where n is the photon

number. These states are split (on resonance) in energy by the ‘Rabi splitting’
g
p
n. Recall that this splitting was |⌦| for a classical laser field, proportional to

the field amplitude. This is mimicked by the scaling with
p
n since the photon

number n is proportional to the field intensity.
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In each sub-space spanned by |g, ni and |e, n � 1i, the system thus performs
Rabi oscillations with a slightly different frequency. If one starts with a coherent
state |↵i for the field mode, the Rabi oscillations will thus evolve at a mean
frequency ⇡ g|↵|, but at large times, the oscillations will ‘get out of phase’. This
leads to a ‘collapse’ of the Rabi oscillation amplitude, as illustrated in Figure 1.2.
It happens on the time scale 1/g which is a factor |↵| times longer than the period
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Figure 1.2: Ground state occupation pg(t) for a two-level atom coupled to a
single mode, initially in the coherent state |↵i with |↵|2 = 7. Time is in units of
the ‘single-photon Rabi frequency’ g.

of the initial Rabi oscillations. At still larger times, of order |↵|/g, the amplitude
of the oscillations ‘revives’ again. This is due to the fact that the Rabi frequencies
form a discrete, incommensurable set (the frequencies are proportional to the
irrational numbers

p
n, on resonance). A more detailed analysis is presented in

a later section.

1.13 More notes on quantum dissipation
Material not covered in WS 16/17.
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1.13.1 State of a two-level system
This section contains details on a somewhat more axiomatic approach than what we did in
the lecture. You may jump directly to Eqs.(1.151, 1.152) that have been discussed in the
Problem sessions.

The expectation values h�3i and h�i completely specify the state of the two-level
system.

Why is this so? A general observable is a hermitean 2 ⇥ 2 matrix. All these
matrices are linear combinations of Pauli matrices

A =

0

@ aee aeg

age agg

1

A =
aee + agg

2
+

aee � agg

2
�3 + age� + aeg�

†

=
aee + agg

2
+
X

j

aj�j, (1.142)

�1 = � + �
† (1.143)

�2 = i(� � �
†) (1.144)

with real coefficients aj.
The above statement is true even for a more general definition of a state than

you may be used to. In the axiomatic language of quantum information, a state
is a mapping from a set of observables to their expectation values

⇢ : A 7! ⇢(A) = hAi⇢ (1.145)

Linear map with ⇢( ) = 1 (real or complex coefficients depending on choice of
observable algebra) and ⇢(A) real for a hermitean A.

Now, the action of this map is determined by evaluation on basis vectors =
Pauli matrices for a two-level system:

⇢(A) =
aee + agg

2
⇢( ) +

X

j

aj⇢(�j) =
aee + agg

2
⇢( ) +

X

j

ajsj (1.146)

with components of Bloch vector s = (s1, s2, s3).
This definition is more general than complex linear combinations of |ei and

|gi. These states play a special role and are called pure states. They also corre-
spond to special observables: projectors

� = |�ih�| (1.147)
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This is also a hermitean operator with eigenvalues 0 or 1. A physical state has
the property

⇢( �) � 0 for all |�i (1.148)

Physical interpretation: this is the probability of finding the system in the pure
state |�i, which clearly must be a positive number.

Definition of density matrix (or density operator): any linear map on the vec-
tor space of observables can be represented by a suitable linear form

⇢(A) = tr(⇢̄A) (1.149)

where ⇢̄ is a hermitean operator. This rule corresponds to the usual calculation of
expectation values for mixed states in quantum statistics. In a finite-dimensional
system, it corresponds to the duality between linear forms and vectors: each lin-
ear form can be represented as a scalar product with a suitable vector. This be-
comes the Riesz representation theorem in an infinite-dimensional Hilbert space.

Using this for projector observables, we find from Eq.(1.148):

0  ⇢( �) = tr(⇢̄|�ih�|) = h�|⇢̄|�i (1.150)

Hence the diagonal elements of the density matrix are positive, in any basis. This
connects again to the interpretation of the probability of finding the system in
the state |�i.

Density operator as observable itself. Expectation value is called purity

Pu(⇢) = h⇢̄i⇢ = tr(⇢̄2) = . . . =
1

2
(1 + s

2) (1.151)

Calculation uses representation in terms of Bloch vector and Pauli matrices

⇢̄ =
1

2

0

@ +
X

j

sj�j

1

A =
+ s · �
2

(1.152)

How to generate mixed states

If a quantum system is closed and can be prepared in a pure state, then the time evolu-
tion is simply Hamiltonian, | (t)i = U(t)| (0)i, and we don’t have to talk about quan-
tum dissipation. This is not so in many settings, however.

There are a few examples how mixed (or non-pure) states arise.
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(i) Initial mixed state. If the initial state is prepared within some probabilistic
scheme, we have to work with an initial density matrix ⇢(0) 6= | (0)ih (0)|. This trans-
lates our incomplete knowledge about the initial conditions. Recall that density matrices
can be “mixed” by forming so-called convex linear combinations

⇢ = p⇢1 + q⇢2, p+ q = 1, p, q � 0, tr ⇢1,2 = 1 (1.153)

where the two density matrices ⇢1,2 are both normalized and p, q can be interpreted as
probabilities for preparing the two.

The time evolution is still simple if the system is closed (Hamiltonian evolution):

⇢(t) = U(t)⇢(0)U †(t) (1.154)

or in differential form (the von Neumann equation)

d

dt
⇢ =

1

ih̄
[H, ⇢] (1.155)

A typical example is an initial state prepared with a given temperature, ⇢(0) /
exp(�HI/T ). Interesting dynamics then happens only if HI 6= H.

Exercise. We actually don’t need to solve the von Neumann equation (1.155): by
expanding ⇢(0) in terms of its eigenvectors, we can just evolve these eigenvectors under
Schrödinger’s equation and mix the final states. By linearity, the result is the same.

(ii) Reduced density matrix. The second example is that of a “system” S coupled to
another one, let’s call it “bath” or “environment” B. In this setting, we restrict ourselves
(by construction) to observables that do not give any information about the state of the
environment. These observables can be written in the form Â⌦ B where B is the unit
operator in the environment’s Hilbert space. The key observation is that the expectation
values for all system observables of this type can be calculated with the help of a density
operator ⇢ for the system,

hÂ⌦ BiS+B = tr(Â⇢S) (1.156)

Note that there are many authors who do not make the distinction between Â⌦ B and
Â. The object ⇢S is called a reduced density operator (or matrix). It is sometimes written

⇢S = trB ⇢S+B = trB | S+Bih S+B| (1.157)

where the last writing assumes that system+environment are in a pure state | S+Bi.
This procedure is called “taking the partial trace” over the environment (symbolic: trB),
tracing out the environment, or “projecting into the system Hilbert space”. More precisely,
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the partial trace and the reduced density operator can be written in terms of the matrix
elements (|ai, |bi are arbitrary system states)

ha|⇢S |bi =
X

n

ha, n|⇢S+B|b, ni (1.158)

where the {|ni} form a complete basis for the environment. You will encounter some-
times the writing

trB⇢S+B =
X

n

hn|⇢S+B|ni (symbolic) (1.159)

where the object on the rhs has to be understood as having still the character of an
operator in the Hilbert space of the system.

The time evolution of a system coupled to an environment produces mixed states in
a dynamical way:

⇢S(t) = trB
h
US+B(t)⇢S+B(0)U

†
S+B(t)

i
(1.160)

even if ⇢S+B(0) starts off in a pure state. This is called the “Nakajima-Zwanziger” projec-
tion. This construction is, of course, only relevant if (i) the initial state is not factorized
(it is entangled) or (ii) there is some interaction between S and B. Otherwise US+B(t)

factorizes, and the partial trace simply reduces to

trB(US ⌦ UB)(⇢S ⌦ ⇢B)(US ⌦ UB)
†

= trB(US⇢SU
†
S)⌦ (UB⇢BU

†
B)

= US⇢SU
†
S trB(UB⇢BU

†
B)

= US⇢SU
†
S (1.161)

The Nakajima-Zwanziger projection (1.160) shares many physically interesting features
and is at the basis of many generalizations of the Schrödinger equation to “open quan-
tum systems”. The system+environment setting thus provides a conceptual framework
to introduce dissipation into quantum mechanics. We shall use it in the later parts of the
quantum optics course.

(iii) Measure and forget. This procedure of mixing states is related to the sys-
tem+environment setting, but it arises from the basic postulates and can be formulated
without introducing explicitly an environment. We recall the standard rule (von Neu-
mann and Lüders) of what happens to a quantum state when an observable Â has been
measured (with eigenvalue a):

| i 7! |ai (1.162)

The system has “collapsed” to an eigenstate |ai of the observable. This is still a pure
state and corresponds to a “perfect” or projective measurement.
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Now introduce probabilities and forgetting. The probability that we get the eigen-
value a is, of course, given by p(a) = |ha| i|2 = tr (|aiha|⇢) where ⇢ = | ih | for an
initially pure state. Hence if we start off with a non-pure state, the von-Neumann-Lüders
rule reads

⇢ 7! |aiha| (1.163)

In this way, we can even “purify” a mixed state! After all, the states in quantum mechan-
ics just reflect the knowledge we have about the system.

The perfect measurement is often quite difficult to perform, however, and many
states can be found that are still compatible with the measured eigenvalue a. In other
words, our measurement cannot distinguish precisely among the different eigenstates
|ai. This is the typical scenario if the eigenvalues are continuously distributed.

Now let us imagine that we only know that we have performed the measurement “Is
the system in state |ai?”, but have forgotten the result. We know that with probability
p(a), the state has collapsed (projective measurement). But with probability 1 � p(a),
something else has happened. Let us assume that the state remained unchanged. By
forgetting the result of the measurement, we are forced to assign to the system a mixed
state:

⇢ 7! (1� p(a))⇢+ p(a)|aiha| (simplest approximation) (1.164)

This scenario is called an “imperfect” or weak measurement. If the probability p(a) is
small, the state change is also small. This is the scenario we shall use to motivate the
dissipative evolution of a two-level system. An alternative notation for the probabilistic
mixture of the two states can be given

⇢ 7!
(
⇢ with prob 1� p(a)

|aiha| with prob p(a)
(1.165)

Remark. We can re-phrase this procedure within a system+environment setting. Suppose that
we couple the system to an environment that can “measure” whether the system is in state |ai.
After some evolution time, we get an entangled state (| i is the initial system density state,
assumed pure and |0i the initial environment state)

| , 0i 7! ha| i|a, 1ai+ US+B | ?, 0i

where |1ai is the (“conditional”) environment state and | ?i is the (non-normalized) system
state orthogonal to |ai. We construct the reduced density operator and get a mapping (between
system operators)

| ih | 7! trB(ha| i|a, 1ai+ US+B | ?, 0i)(ha| i|a, 1ai+ US+B | ?, 0i)†

Now comes the key assumption: the coupling to the environment has been sufficiently strong so
that one can distinguish the environment states |1ai, |0i, and the environment states contained
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in US+B | ?, 0i. The best we can do is that these states are orthogonal

h1a|0i ⇡ 0, trB US+B | ?, 0iha, 1a| ⇡ 0 (1.166)

This removes the mixed (crossed) terms in the partial trace, and we get a mixture (with p(a) =

|ha| i|2 as in QM I)

| ih | 7! |aiha|p(a) + trB US+B | ?, 0ih ?, 0|U†
S+B

where the first term contains the projection onto the eigenstate. The simplest assumption for
the second term is that the environment does not evolve at all, provided the system is in the
orthogonal state | ?i. Then US+B | ?, 0i ⇡ | ?, 0i, and the partial trace gives

| ih | 7! |aiha|p(a) + ?| ih | ?

where ? projects into the subspace orthogonal to |ai. The last term has a trace 1 � p(a), as in
Eq.(1.164), but differs slightly because of the projection. We come back to this when discussing
spontaneous emission.

See the introductory article “Decoherence and the transition from quantum to classical” by
Zurek (1991) for more details on this discussion. The main message is that the coupling to an
environment can provide the same physics as measuring a quantum system.

1.13.2 Quantum dissipation in a two-level system

Evolution over time step �t. “Sufficiently small” in some sense to put together Hamilto-
nian evolution and measurement (“monitoring”) by an environment.

Pure Hamiltonian (for simplicity, time-independent, applies in rotating frame) (h̄ =

1)

⇢(t+�t) ⇡ ( � iH�t)⇢(t)( + iH�t) = ⇢(t)� i [H�t, ⇢(t)] +O(�t
2) (1.167)

Now observing and forgetting about the results. We consider two scenarios.

Dephasing: measuring energy states. We assume that with a probability �p, we
have been able to determine in which energy eigenstate the two-level system is. This
can be achieved, for example, by performing measurements on the environment. The
rule for “measure and forget” then gives (we have three outcomes)

⇢(t+�t) =

8
>><

>>:

⇢(t) with prob 1��p

|gihg| with prob �p ⇢gg(t)

|eihe| with prob �p ⇢ee(t)

(1.168)
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This gives the mixed state, as a simple calculation shows

⇢(t+�t) = (1��p)⇢(t) +�p

X

a=g, e

ha|⇢(t)|ai |aiha|

= (1� 1

2
�p)⇢(t) + 1

2
�p�3⇢(t)�3 (1.169)

Concatenate the two elementary processes (1.167, 1.169) and construct an approxi-
mate time derivative

�⇢

�t
⇡ �i [H, ⇢(t)] +

�p

2�t
{�3⇢(t)�3 � ⇢(t)} (1.170)

This is the dynamical equation for a system subject to dephasing. The equation is in
the so-called Lindblad form (see Eq.(1.178)), a general form for the time evolution of
an open system that we shall derive later in the lecture. The rate �p/2�t is called the
“dephasing rate”.

Exercise. Switch to the Heisenberg picture and calculate from Eq.(1.170) the rate of
change h��/�ti of the Bloch vector. Show that the non-Hamiltonian terms give

h��i
�t

����
non�H

⇡ � �p

2�t
h�i (1.171)

while h��3/�ti = 0. The monitoring of the energy levels thus does not change the
inversion which is not surprising, since we made the assumption that the measured
eigenstate is not changed. The dipole, that captures the relative phase of superposition
states in the energy basis, however, decays with a rate �p/2�t. We can thus interpret the
dipole relaxation rate as the rate at which the environment acquires information about
the system’s energy. Note also that the decay of the dipole is the price to pay for the
measurement in the energy basis – the quantum-mechanical rule that “any measurement
perturbs the system” still holds.

Spontaneous emission: quantum jumps. The second scenario is based on the
observation of the photons that a two-level atom can emit. We assume that over the
evolution time �t, the probability to detect an emitted photon is �p ⇢ee(t). We have
clearly �p = ��t according to the law of radioactive decay. In addition, once this
photon has been detected, we know that the atom must be in the ground state |gi. This
feature is different from the previous scenario where the measurement perturbed the
system in a weaker way.

Now imagine that we throw away the information that a photon has been emitted.
The state then mixes into

⇢(t+�t) =

(
⇢
0 with prob 1��p

|gihg| with prob �p ⇢ee(t)
(1.172)
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where the state ⇢
0 is normalized and corresponds to the event “no photon detected”.

This can be translated into

⇢(t+�t) = ⇢
00 +�p ⇢ee(t) |gihg| = ⇢

00 +�p�⇢(t)�† (1.173)

where ⇢00 is a non-normalized state with trace 1��p ⇢ee(t). The second term appearing
here is called a “quantum jump”: the photon emission happens when the atom jumps
from the excited to the ground state |ei ! |gi. The ladder (or annihilation) operator �
plays here a very intuitive role. If ⇢(t) = | (t)ih (t)| is a pure state, the system jumps to
the state �| (t) at the photon emission.

The first term ⇢
00 in Eq.(1.173) now takes care of the conservation of probabilities.

In our first guess (1.164) we simply took ⇢00 = (1��p ⇢ee)⇢. This recipe must be refined
here, for two reasons.

One reason is more formal: we want that ⇢(t + �t) to be expressed as a linear
map of the state ⇢(t), but �p ⇢ee ⇢ is quadratic in ⇢. This reason is deeply rooted in
the linearity of quantum mechanics. The Nakajima-Zwanziger scheme (1.160) which
provides a very general framework for quantum dissipation, is also a linear map between
density matrices.

The second reason is that the event “no photon has been detected” actually changes
our knowledge about the system. Qualitatively speaking, it increases our confidence that
the system might be in the ground state. We are having less the tendency to think it is in
the excited state. After all, if the system is in the excited state, we would expect at some
point a photon to appear! In the opposite limit, if over a very long time we do not detect
any photons, the system must be (with a very high probability) in the ground state, and
we have gained this knowledge from the sequence of “no-photon” events.

We are thus led to the following refined approximation

⇢
00 ⇡

⇣
� 1

2
�p |eihe|

⌘
⇢(t)

⇣
� 1

2
�p |eihe|

⌘

⇡ ⇢(t)� 1

2
�p

n
�
†
� ⇢(t) + ⇢(t)�†�

o
(1.174)

Putting Eqs.(1.173, 1.174), together, we find the so-called “master equation” for a two-
level system with spontaneous decay

�⇢

�t
⇡ �i [H, ⇢(t)] +

�p

�t

n
�⇢(t)�† � 1

2
�
†
�⇢(t)� 1

2
⇢(t)�†�

o
(1.175)

More details on this derivation can be found in the paper by Dalibard & al. (1992) on a
“Wave-Function Approach to Dissipative Processes in Quantum Optics”.

Exercise. By working out matrix elements of this equation, identify � = �p/�t with
the spontaneous decay rate. The important message of this equation is that spontaneous

63



emission changes both the inversion and the dipole:

h��i
�t

����
non�H

⇡ �1

2
�h�i (1.176)

h��3i
�t

����
non�H

⇡ ��(h�3i+ 1) (1.177)

1.13.3 Lindblad master equation

Without going into the details of the derivation, we just state here that the generalized
von-Neumann equations (1.170, 1.175) are special cases of a general theorem about the
time evolution of a quantum system, the

Lindblad theorem. If a time evolution Tt : ⇢(0) 7! ⇢(t) satisfies the following condi-
tions:

– the map Tt is linear and maps density matrices onto density matrices;

– the map Tt is completely positive6;

– expectation values evolve continuous in time;

– repeating the map corresponds to adding time lapses, TtTt0 = Tt+t0 ,

then there exists a hermitean operator H and a countable set of system operators Lk

(k = 1 . . .K) such that the state ⇢(t) = Tt⇢(0) solves the differential equation

d⇢

dt
= �i [H, ⇢] +

KX

k=1

n
Lk⇢L

†
k �

1

2
L
†
kLk⇢�

1

2
⇢L

†
kLk

o
(1.178)

The operators Lk are called Lindblad or jump operators.
For spontaneous emission and dephasing, only a single Lindblad operator appears,

as shown in this Table:

spont. decay dephasing
Lindblad operator p

� �
p
/2�3

where  is the dephasing rate. Keeping both Lindblad operators in the time evolution,
gives the Bloch equations (1.138, 1.139) with a dephasing rate � =  + �/2. The
Lindblad theorem is proven later on in the quantum optics lecture. A simple proof can
be found in Nielsen & Chuang (2011) and Henkel (2007).

6Qualitatively speaking: density matrices are mapped onto density matrices even if the system
is augmented by some environment and the map Tt augmented by “nothing happens with the
environment”.
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